Holomorphy types and spaces of entire functions of bounded type on Banach spaces
Vinícius V. Fávaro; Ariosvaldo M. Jatobá
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 4, page 909-927
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFávaro, Vinícius V., and Jatobá, Ariosvaldo M.. "Holomorphy types and spaces of entire functions of bounded type on Banach spaces." Czechoslovak Mathematical Journal 59.4 (2009): 909-927. <http://eudml.org/doc/37966>.
@article{Fávaro2009,
abstract = {In this paper spaces of entire functions of $\Theta $-holomorphy type of bounded type are introduced and results involving these spaces are proved. In particular, we “construct an algorithm” to obtain a duality result via the Borel transform and to prove existence and approximation results for convolution equations. The results we prove generalize previous results of this type due to B. Malgrange: Existence et approximation des équations aux dérivées partielles et des équations des convolutions. Annales de l’Institute Fourier (Grenoble) VI, 1955/56, 271–355; C. Gupta: Convolution Operators and Holomorphic Mappings on a Banach Space, Séminaire d’Analyse Moderne, 2, Université de Sherbrooke, Sherbrooke, 1969; M. Matos: Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations, IMECC-UNICAMP, 2007; and X. Mujica: Aplicações $\tau (p;q)$-somantes e $\sigma (p)$-nucleares, Thesis, Universidade Estadual de Campinas, 2006.},
author = {Fávaro, Vinícius V., Jatobá, Ariosvaldo M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach spaces; holomorphy types; homogeneous polynomials; holomorphic functions; convolution operators; Borel transform; approximation and existence theorems; Banach space; holomorphy type; homogeneous polynomial; holomorphic function; convolution operator; Borel transform; approximation theorem; existence theorem},
language = {eng},
number = {4},
pages = {909-927},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Holomorphy types and spaces of entire functions of bounded type on Banach spaces},
url = {http://eudml.org/doc/37966},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Fávaro, Vinícius V.
AU - Jatobá, Ariosvaldo M.
TI - Holomorphy types and spaces of entire functions of bounded type on Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 909
EP - 927
AB - In this paper spaces of entire functions of $\Theta $-holomorphy type of bounded type are introduced and results involving these spaces are proved. In particular, we “construct an algorithm” to obtain a duality result via the Borel transform and to prove existence and approximation results for convolution equations. The results we prove generalize previous results of this type due to B. Malgrange: Existence et approximation des équations aux dérivées partielles et des équations des convolutions. Annales de l’Institute Fourier (Grenoble) VI, 1955/56, 271–355; C. Gupta: Convolution Operators and Holomorphic Mappings on a Banach Space, Séminaire d’Analyse Moderne, 2, Université de Sherbrooke, Sherbrooke, 1969; M. Matos: Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations, IMECC-UNICAMP, 2007; and X. Mujica: Aplicações $\tau (p;q)$-somantes e $\sigma (p)$-nucleares, Thesis, Universidade Estadual de Campinas, 2006.
LA - eng
KW - Banach spaces; holomorphy types; homogeneous polynomials; holomorphic functions; convolution operators; Borel transform; approximation and existence theorems; Banach space; holomorphy type; homogeneous polynomial; holomorphic function; convolution operator; Borel transform; approximation theorem; existence theorem
UR - http://eudml.org/doc/37966
ER -
References
top- Banach, S., Théorie des opérations linéaires, Hafner New York (1932). (1932) Zbl0005.20901
- Dineen, S., 10.4064/sm-39-3-241-288, Stud. Math. 39 (1971), 241-288. (1971) Zbl0235.32013MR0304705DOI10.4064/sm-39-3-241-288
- Fávaro, V. V., 10.4171/PM/1813, Port. Math. 65 (2008), 285-309. (2008) MR2428422DOI10.4171/PM/1813
- Fávaro, V. V., Convolution equations on spaces of quasi-nuclear functions of a given type and order, Preprint.
- Floret, K., Natural norms on symmetric tensor products of normed spaces, Note Mat. 17 (1997), 153-188. (1997) Zbl0961.46013MR1749787
- Gupta, C., Convolution Operators and Holomorphic Mappings on a Banach Space. Séminaire d'Analyse Moderne, 2, Université de Sherbrooke Sherbrooke (1969). (1969)
- Horváth, J., Topological Vector Spaces and Distribuitions, Addison-Wesley Reading (1966). (1966) MR0205028
- Malgrange, B., Existence et approximation des équations aux dérivées partielles et des équations des convolutions, Annales de l'Institute Fourier (Grenoble) VI (1955/56), 271-355. (1955) MR0086990
- Martineau, A., 10.24033/bsmf.1650, Bull. Soc. Math. Fr. 95 (1967), 109-154 French. (1967) Zbl0167.44202MR1507968DOI10.24033/bsmf.1650
- Matos, M. C., 10.1016/S0304-0208(08)70827-2, In: Functional Analysis, Holomorphy and Approximation Theory II. North-Holland Math. Studies. G. I. Zapata North-Holland Amsterdam (1984), 139-170. (1984) Zbl0568.46036MR0771327DOI10.1016/S0304-0208(08)70827-2
- Matos, M. C., 10.1016/S0304-0208(08)72168-6, In: Complex Analysis, Functional Analysis and Approximation Theory J. Mujica North-Holland Math. Studies Vol. 125 North-Holland Amsterdam (1986), 129-171. (1986) Zbl0658.46016MR0893415DOI10.1016/S0304-0208(08)72168-6
- Matos, M. C., Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations, IMECC-UNICAMP (2007),http://www.ime.unicamp.br/rel_pesq/2007/rp03-07.html. (2007)
- Mujica, X., Aplicações -somantes e -nucleares, Thesis Universidade Estadual de Campinas (2006). (2006)
- Nachbin, L., Topology on Spaces of Holomorphic Mappings, Springer New York (1969). (1969) Zbl0172.39902MR0254579
- Pietsch, A., Ideals of multilinear functionals, In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199. (1984) Zbl0562.47037MR0763541
- Pietsch, A., Ideals of multilinear functionals, In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199. (1984) Zbl0562.47037MR0763541
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.