The triadjoint of an orthosymmetric bimorphism
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 1, page 85-94
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topToumi, Mohamed Ali. "The triadjoint of an orthosymmetric bimorphism." Czechoslovak Mathematical Journal 60.1 (2010): 85-94. <http://eudml.org/doc/37990>.
@article{Toumi2010,
abstract = {Let $A$ and $B$ be two Archimedean vector lattices and let $( A^\{\prime \}) _n^\{\prime \}$ and $( B^\{\prime \}) _n^\{\prime \}$ be their order continuous order biduals. If $\Psi \colon A\times A\rightarrow B$ is a positive orthosymmetric bimorphism, then the triadjoint $\Psi ^\{\ast \ast \ast \}\colon ( A^\{\prime \}) _n^\{\prime \}\times ( A^\{\prime \}) _n^\{\prime \}\rightarrow ( B^\{\prime \}) _n^\{\prime \}$ of $\Psi $ is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost $f$-algebras.},
author = {Toumi, Mohamed Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost $f$-algebra orthosymmetric bimorphism; almost -algebra orthosymmetric bimorphism},
language = {eng},
number = {1},
pages = {85-94},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The triadjoint of an orthosymmetric bimorphism},
url = {http://eudml.org/doc/37990},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Toumi, Mohamed Ali
TI - The triadjoint of an orthosymmetric bimorphism
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 85
EP - 94
AB - Let $A$ and $B$ be two Archimedean vector lattices and let $( A^{\prime }) _n^{\prime }$ and $( B^{\prime }) _n^{\prime }$ be their order continuous order biduals. If $\Psi \colon A\times A\rightarrow B$ is a positive orthosymmetric bimorphism, then the triadjoint $\Psi ^{\ast \ast \ast }\colon ( A^{\prime }) _n^{\prime }\times ( A^{\prime }) _n^{\prime }\rightarrow ( B^{\prime }) _n^{\prime }$ of $\Psi $ is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost $f$-algebras.
LA - eng
KW - almost $f$-algebra orthosymmetric bimorphism; almost -algebra orthosymmetric bimorphism
UR - http://eudml.org/doc/37990
ER -
References
top- Aliprantis, C. D., Burkinshaw, O., Positive Operators, Academic Press. Orlando (1985). (1985) Zbl0608.47039MR0809372
- Arens, R., 10.1090/S0002-9939-1951-0045941-1, Proc. Amer. Math. Soc. 2 (1951), 839-848. (1951) Zbl0044.32601MR0045941DOI10.1090/S0002-9939-1951-0045941-1
- Basly, M., Triki, A., -algèbres réticulées, Preprint, Tunis (1988). (1988) MR0964828
- Bernau, S. J., Huijsmans, C. B., The order bidual of almost -algebras and -algebras, Trans. Amer. Math. Soc. 347 (1995), 4259-4275. (1995) Zbl0851.46003MR1308002
- Bernau, S. J., Huijsmans, C. B., 10.1017/S0305004100068560, Math. Proc. Cam. Phil. Soc. 107 (1990), 287-308. (1990) Zbl0707.06009MR1027782DOI10.1017/S0305004100068560
- Buskes, G., Rooij, A. Van, 10.1023/A:1009874426887, Positivity 3 (2000), 233-243. (2000) MR1797126DOI10.1023/A:1009874426887
- Buskes, G., Rooij, A. Van, 10.1023/A:1009826510957, Positivity 3 (2000), 227-131. (2000) MR1797125DOI10.1023/A:1009826510957
- Grobler, J. J., 10.1023/A:1009880911903, Positivity 3 (1999), 357-364. (1999) Zbl0945.46003MR1721545DOI10.1023/A:1009880911903
- Huijsmans, C. B., Lattice-ordered Algebras and -algebras: A survey in Studies in Economic Theory 2, Springer Verlag, Berlin-Heidelberg-New York (1990), 151-169. (1990) MR1307423
- Luxemburg, W. A. J., Zaanen, A. C., Riesz Spaces I, North-Holland. Amsterdam (1971). (1971)
- Meyer-Nieberg, P., Banach Lattices, Springer-Verlag, Berlin Heidelberg New York (1991). (1991) Zbl0743.46015MR1128093
- Schaefer, H. H., Banach Lattices and Positive Operators, Grundlehren. Math. Wiss. Vol. 215, Springer, Berlin (1974). (1974) Zbl0296.47023MR0423039
- Scheffold, E., -Banachverbandsalgebren, Math. Z. 177 (1981), 183-205. (1981) Zbl0439.46037MR0612873
- Triki, A., On algebra homomorphism in complex -algebras, Comment. Math. Univ. Carolin. 43 (2002), 23-31. (2002) MR1903304
- Zaanen, A. C., Riesz spaces II, North-Holland, Amsterdam (1983). (1983) Zbl0519.46001MR0704021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.