The triadjoint of an orthosymmetric bimorphism

Mohamed Ali Toumi

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 1, page 85-94
  • ISSN: 0011-4642

Abstract

top
Let A and B be two Archimedean vector lattices and let ( A ' ) n ' and ( B ' ) n ' be their order continuous order biduals. If Ψ : A × A B is a positive orthosymmetric bimorphism, then the triadjoint Ψ * * * : ( A ' ) n ' × ( A ' ) n ' ( B ' ) n ' of Ψ is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost f -algebras.

How to cite

top

Toumi, Mohamed Ali. "The triadjoint of an orthosymmetric bimorphism." Czechoslovak Mathematical Journal 60.1 (2010): 85-94. <http://eudml.org/doc/37990>.

@article{Toumi2010,
abstract = {Let $A$ and $B$ be two Archimedean vector lattices and let $( A^\{\prime \}) _n^\{\prime \}$ and $( B^\{\prime \}) _n^\{\prime \}$ be their order continuous order biduals. If $\Psi \colon A\times A\rightarrow B$ is a positive orthosymmetric bimorphism, then the triadjoint $\Psi ^\{\ast \ast \ast \}\colon ( A^\{\prime \}) _n^\{\prime \}\times ( A^\{\prime \}) _n^\{\prime \}\rightarrow ( B^\{\prime \}) _n^\{\prime \}$ of $\Psi $ is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost $f$-algebras.},
author = {Toumi, Mohamed Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost $f$-algebra orthosymmetric bimorphism; almost -algebra orthosymmetric bimorphism},
language = {eng},
number = {1},
pages = {85-94},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The triadjoint of an orthosymmetric bimorphism},
url = {http://eudml.org/doc/37990},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Toumi, Mohamed Ali
TI - The triadjoint of an orthosymmetric bimorphism
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 85
EP - 94
AB - Let $A$ and $B$ be two Archimedean vector lattices and let $( A^{\prime }) _n^{\prime }$ and $( B^{\prime }) _n^{\prime }$ be their order continuous order biduals. If $\Psi \colon A\times A\rightarrow B$ is a positive orthosymmetric bimorphism, then the triadjoint $\Psi ^{\ast \ast \ast }\colon ( A^{\prime }) _n^{\prime }\times ( A^{\prime }) _n^{\prime }\rightarrow ( B^{\prime }) _n^{\prime }$ of $\Psi $ is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost $f$-algebras.
LA - eng
KW - almost $f$-algebra orthosymmetric bimorphism; almost -algebra orthosymmetric bimorphism
UR - http://eudml.org/doc/37990
ER -

References

top
  1. Aliprantis, C. D., Burkinshaw, O., Positive Operators, Academic Press. Orlando (1985). (1985) Zbl0608.47039MR0809372
  2. Arens, R., 10.1090/S0002-9939-1951-0045941-1, Proc. Amer. Math. Soc. 2 (1951), 839-848. (1951) Zbl0044.32601MR0045941DOI10.1090/S0002-9939-1951-0045941-1
  3. Basly, M., Triki, A., f f -algèbres réticulées, Preprint, Tunis (1988). (1988) MR0964828
  4. Bernau, S. J., Huijsmans, C. B., The order bidual of almost f -algebras and d -algebras, Trans. Amer. Math. Soc. 347 (1995), 4259-4275. (1995) Zbl0851.46003MR1308002
  5. Bernau, S. J., Huijsmans, C. B., 10.1017/S0305004100068560, Math. Proc. Cam. Phil. Soc. 107 (1990), 287-308. (1990) Zbl0707.06009MR1027782DOI10.1017/S0305004100068560
  6. Buskes, G., Rooij, A. Van, 10.1023/A:1009874426887, Positivity 3 (2000), 233-243. (2000) MR1797126DOI10.1023/A:1009874426887
  7. Buskes, G., Rooij, A. Van, 10.1023/A:1009826510957, Positivity 3 (2000), 227-131. (2000) MR1797125DOI10.1023/A:1009826510957
  8. Grobler, J. J., 10.1023/A:1009880911903, Positivity 3 (1999), 357-364. (1999) Zbl0945.46003MR1721545DOI10.1023/A:1009880911903
  9. Huijsmans, C. B., Lattice-ordered Algebras and f -algebras: A survey in Studies in Economic Theory 2, Springer Verlag, Berlin-Heidelberg-New York (1990), 151-169. (1990) MR1307423
  10. Luxemburg, W. A. J., Zaanen, A. C., Riesz Spaces I, North-Holland. Amsterdam (1971). (1971) 
  11. Meyer-Nieberg, P., Banach Lattices, Springer-Verlag, Berlin Heidelberg New York (1991). (1991) Zbl0743.46015MR1128093
  12. Schaefer, H. H., Banach Lattices and Positive Operators, Grundlehren. Math. Wiss. Vol. 215, Springer, Berlin (1974). (1974) Zbl0296.47023MR0423039
  13. Scheffold, E., f f -Banachverbandsalgebren, Math. Z. 177 (1981), 183-205. (1981) Zbl0439.46037MR0612873
  14. Triki, A., On algebra homomorphism in complex f -algebras, Comment. Math. Univ. Carolin. 43 (2002), 23-31. (2002) MR1903304
  15. Zaanen, A. C., Riesz spaces II, North-Holland, Amsterdam (1983). (1983) Zbl0519.46001MR0704021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.