A direct approach to the Weiss conjecture for bounded analytic semigroups
Bounit Hamid; Driouich Adberrahim; El-Mennaoui Omar
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 2, page 527-539
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHamid, Bounit, Adberrahim, Driouich, and Omar, El-Mennaoui. "A direct approach to the Weiss conjecture for bounded analytic semigroups." Czechoslovak Mathematical Journal 60.2 (2010): 527-539. <http://eudml.org/doc/38025>.
@article{Hamid2010,
abstract = {We give a new proof of the Weiss conjecture for analytic semigroups. Our approach does not make any recourse to the bounded $H^\{\infty \}$-calculus and is based on elementary analysis.},
author = {Hamid, Bounit, Adberrahim, Driouich, Omar, El-Mennaoui},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinite dimensional systems; analytic semigroups; unbounded observation operator; admissibility; fractional power; infinite-dimensional system; analytic semigroup; unbounded observation operator; admissibility; fractional power},
language = {eng},
number = {2},
pages = {527-539},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A direct approach to the Weiss conjecture for bounded analytic semigroups},
url = {http://eudml.org/doc/38025},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Hamid, Bounit
AU - Adberrahim, Driouich
AU - Omar, El-Mennaoui
TI - A direct approach to the Weiss conjecture for bounded analytic semigroups
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 527
EP - 539
AB - We give a new proof of the Weiss conjecture for analytic semigroups. Our approach does not make any recourse to the bounded $H^{\infty }$-calculus and is based on elementary analysis.
LA - eng
KW - infinite dimensional systems; analytic semigroups; unbounded observation operator; admissibility; fractional power; infinite-dimensional system; analytic semigroup; unbounded observation operator; admissibility; fractional power
UR - http://eudml.org/doc/38025
ER -
References
top- Amann, H., Linear and quasilinear Parabolic Problems. Vol. I, Birkhäuser, Basel (1995). (1995) MR1345385
- Arendt, W., Batty, C., Hieber, C., Neubrander, F., Vector Valued Laplace transforms and Cauchy Problems, Vol. 96 of Monographes in Mathematics. Birkäuser (2001). (2001) Zbl0978.34001MR1886588
- Balakrishnan, A. V., 10.2140/pjm.1960.10.419, Pacific J. Math. 10 (1960), 419-437. (1960) Zbl0103.33502MR0115096DOI10.2140/pjm.1960.10.419
- Engel, K., On the characterization of admissible control and observation operators, Systems and Control Letters (1998), 34 225-227. (1998) Zbl0909.93034MR1637265
- Faming, G., Admissibility of linear systems in Banach spaces, Journal of electronic Science and Technology in China (2004), 75-78. (2004)
- Gao, M. C., Hou, J. C., 10.1007/BF01225527, Integral Equations and Operator Theory 35 (1999), 53-64. (1999) MR1707930DOI10.1007/BF01225527
- Grabowski, P., 10.1080/00207179508921589, Internat. J. Control 62 (1995), 1163-1173. (1995) Zbl0837.93005MR1636622DOI10.1080/00207179508921589
- Grabowski, P., Callier, F. M., 10.1007/BF01308629, Integral Equations Operator Theory 25 (1996), 183-196. (1996) MR1388679DOI10.1007/BF01308629
- Haak, B., Kunstmann, P. C., 10.1137/060656139, SIAM J. Control Optimization 45 2094-2118 (2007). (2007) Zbl1126.93021MR2285716DOI10.1137/060656139
- Hansen, S., Weiss, G., 10.1016/0167-6911(91)90051-F, Systems Control Letters 16 219-227 (1991). (1991) MR1098682DOI10.1016/0167-6911(91)90051-F
- Jacob, B., Partington, J. R., 10.1007/BF01301467, Integral Equations and Operator Theory 40 (2001), 231-243. (2001) Zbl1031.93107MR1831828DOI10.1007/BF01301467
- Jacob, B., Partington, J. R., Pott, S., 10.1017/S0013091500001024, Proc. Edinb. Math. Soc. 45 (2002), 353-362. (2002) Zbl1176.47065MR1912645DOI10.1017/S0013091500001024
- Jacob, B., Zwart, H., 10.1137/S0363012903423235, SIAM J. Control Optim. 43 137-153 (2004). (2004) Zbl1101.93042MR2082696DOI10.1137/S0363012903423235
- Komatsu, H., 10.2140/pjm.1966.19.285, Pacific J. Math. 19 (1966), 285-346. (1966) MR0201985DOI10.2140/pjm.1966.19.285
- LeMerdy, C., 10.1112/S002461070200399X, J. London Math. Soc. 67 (2003), 715-738. (2003) MR1967702DOI10.1112/S002461070200399X
- Partington, J. R., Pott, S., Admissibility and exact observability of observation operators for semigroups, Irish Math. Soc. Bulletin 55 19-39 (2005). (2005) Zbl1159.47302MR2185647
- Partington, J. R., Weiss, G., Admissible observation operators for the right-shift semigroup, Mathematics of Control, Signals and Systems (2000), 13 179-192. (2000) Zbl0966.93033MR1784262
- Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin (1983). (1983) Zbl0516.47023MR0710486
- Staffans, O., Well-posed linear systems, Cambridge University press, Cambridge (2005). (2005) Zbl1057.93001MR2154892
- Weiss, G., Two conjectures on the admissibility of control operators, In Estimation and Control of Distributed Parameter Systems, Birkhäuser Verlag W. Desch, F. Kappel (1991), 367-378. (1991) Zbl0763.93041MR1155659
- Weiss, G., 10.1137/0327028, SIAM Journal Control & Optimization 27 527-545 (1989). (1989) Zbl0685.93043MR0993285DOI10.1137/0327028
- Weiss, G., 10.1007/BF02788172, Israel J. Math. 65 17-43 (1989). (1989) MR0994732DOI10.1007/BF02788172
- Zwart, H., Jacob, B., Staffans, O., 10.1016/S0167-6911(02)00277-3, Systems Control Letters 48 (2003), 341-350. (2003) Zbl1157.93421MR2020649DOI10.1016/S0167-6911(02)00277-3
- Zwart, H. J., 10.1016/j.sysconle.2005.02.009, Systems and Control Letters 54 973-979 (2005). (2005) Zbl1129.93422MR2166288DOI10.1016/j.sysconle.2005.02.009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.