On the mean value of the generalized Dirichlet -functions
Rong Ma; Yuan Yi; Yulong Zhang
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 3, page 597-620
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMa, Rong, Yi, Yuan, and Zhang, Yulong. "On the mean value of the generalized Dirichlet $L$-functions." Czechoslovak Mathematical Journal 60.3 (2010): 597-620. <http://eudml.org/doc/38030>.
@article{Ma2010,
abstract = {Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions \[ L(s,\chi ,a)=\sum \_\{n=1\}^\{\infty \}\frac\{\chi (n)\}\{(n+a)^s\}, \]
where $s=\sigma +\{\rm i\} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac\{1\}\{2\}+\{\rm i\} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.},
author = {Ma, Rong, Yi, Yuan, Zhang, Yulong},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Dirichlet $L$-functions; mean value properties; functional equation; asymptotic formula; generalized Dirichlet -function; mean value property; functional equation; asymptotic formula},
language = {eng},
number = {3},
pages = {597-620},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the mean value of the generalized Dirichlet $L$-functions},
url = {http://eudml.org/doc/38030},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Ma, Rong
AU - Yi, Yuan
AU - Zhang, Yulong
TI - On the mean value of the generalized Dirichlet $L$-functions
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 597
EP - 620
AB - Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions \[ L(s,\chi ,a)=\sum _{n=1}^{\infty }\frac{\chi (n)}{(n+a)^s}, \]
where $s=\sigma +{\rm i} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac{1}{2}+{\rm i} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.
LA - eng
KW - generalized Dirichlet $L$-functions; mean value properties; functional equation; asymptotic formula; generalized Dirichlet -function; mean value property; functional equation; asymptotic formula
UR - http://eudml.org/doc/38030
ER -
References
top- Berndt, B. C., Generalized Dirichlet series and Hecke's functional equation, Proc. Edinburgh Math. Soc. 15 (1966/67), 309-313. (1966) MR0225732
- Berndt, B. C., 10.1090/S0002-9947-1969-0252330-1, Trans. Amer. Math. Soc. 146 (1969), 323-342. (1969) MR0252330DOI10.1090/S0002-9947-1969-0252330-1
- Berndt, B. C., Identities involving the coefficients of a class of Dirichlet series. IV, Trans. Amer. Math. Soc. 149 (1970), 179-185. (1970) Zbl0207.05504MR0260685
- Heath-Brown, D. R., 10.1007/BF02566206, Comment. Math. Helvetici 56 (1981), 148-161. (1981) Zbl0457.10020MR0615623DOI10.1007/BF02566206
- Zhang, W. P., On the second mean value of Dirichlet -functions, Chinese Annals of Mathematics 11A (1990), 121-127. (1990) MR1048690
- Zhang, W. P., Yi, Y., He, X. L., 10.1006/jnth.2000.2515, Journal of Number Theory 84 (2000), 199-213. (2000) Zbl0958.11061MR1795790DOI10.1006/jnth.2000.2515
- Yi, Y., Zhang, W. P., On the -th power mean of Dirichlet -functions with the weight of Gauss sums, Advances in Mathematics 31 (2002), 517-526. (2002) MR1959549
- Balasubramanian, R., 10.4064/aa-38-3-273-283, Acta Arith. 38 (1980), 273-283. (1980) MR0602193DOI10.4064/aa-38-3-273-283
- Titchmarsh, E. C., The Theory of the Riemannn Zeta-function, Oxford (1951). (1951) MR0046485
- Ivic, A., The Riemann zeta-function, The Theory of the Riemann Zeta-Function with Applications, New York: Wiley (1985). (1985) Zbl0583.10021MR0792089
- Pan, C. D., Pan, C. B., Elements of the Analytic Number Theory, Science Press, Beijing (1991), Chinese. (1991)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.