On the mean value of the generalized Dirichlet L -functions

Rong Ma; Yuan Yi; Yulong Zhang

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 3, page 597-620
  • ISSN: 0011-4642

Abstract

top
Let q 3 be an integer, let χ denote a Dirichlet character modulo q . For any real number a 0 we define the generalized Dirichlet L -functions L ( s , χ , a ) = n = 1 χ ( n ) ( n + a ) s , where s = σ + i t with σ > 1 and t both real. They can be extended to all s by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet L -functions especially for s = 1 and s = 1 2 + i t , and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.

How to cite

top

Ma, Rong, Yi, Yuan, and Zhang, Yulong. "On the mean value of the generalized Dirichlet $L$-functions." Czechoslovak Mathematical Journal 60.3 (2010): 597-620. <http://eudml.org/doc/38030>.

@article{Ma2010,
abstract = {Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions \[ L(s,\chi ,a)=\sum \_\{n=1\}^\{\infty \}\frac\{\chi (n)\}\{(n+a)^s\}, \] where $s=\sigma +\{\rm i\} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac\{1\}\{2\}+\{\rm i\} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.},
author = {Ma, Rong, Yi, Yuan, Zhang, Yulong},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Dirichlet $L$-functions; mean value properties; functional equation; asymptotic formula; generalized Dirichlet -function; mean value property; functional equation; asymptotic formula},
language = {eng},
number = {3},
pages = {597-620},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the mean value of the generalized Dirichlet $L$-functions},
url = {http://eudml.org/doc/38030},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Ma, Rong
AU - Yi, Yuan
AU - Zhang, Yulong
TI - On the mean value of the generalized Dirichlet $L$-functions
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 597
EP - 620
AB - Let $q\ge 3$ be an integer, let $\chi $ denote a Dirichlet character modulo $q.$ For any real number $a\ge 0$ we define the generalized Dirichlet $L$-functions \[ L(s,\chi ,a)=\sum _{n=1}^{\infty }\frac{\chi (n)}{(n+a)^s}, \] where $s=\sigma +{\rm i} t$ with $\sigma >1$ and $t$ both real. They can be extended to all $s$ by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet $L$-functions especially for $s=1$ and $s=\frac{1}{2}+{\rm i} t$, and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.
LA - eng
KW - generalized Dirichlet $L$-functions; mean value properties; functional equation; asymptotic formula; generalized Dirichlet -function; mean value property; functional equation; asymptotic formula
UR - http://eudml.org/doc/38030
ER -

References

top
  1. Berndt, B. C., Generalized Dirichlet series and Hecke's functional equation, Proc. Edinburgh Math. Soc. 15 (1966/67), 309-313. (1966) MR0225732
  2. Berndt, B. C., 10.1090/S0002-9947-1969-0252330-1, Trans. Amer. Math. Soc. 146 (1969), 323-342. (1969) MR0252330DOI10.1090/S0002-9947-1969-0252330-1
  3. Berndt, B. C., Identities involving the coefficients of a class of Dirichlet series. IV, Trans. Amer. Math. Soc. 149 (1970), 179-185. (1970) Zbl0207.05504MR0260685
  4. Heath-Brown, D. R., 10.1007/BF02566206, Comment. Math. Helvetici 56 (1981), 148-161. (1981) Zbl0457.10020MR0615623DOI10.1007/BF02566206
  5. Zhang, W. P., On the second mean value of Dirichlet L -functions, Chinese Annals of Mathematics 11A (1990), 121-127. (1990) MR1048690
  6. Zhang, W. P., Yi, Y., He, X. L., 10.1006/jnth.2000.2515, Journal of Number Theory 84 (2000), 199-213. (2000) Zbl0958.11061MR1795790DOI10.1006/jnth.2000.2515
  7. Yi, Y., Zhang, W. P., On the 2 k -th power mean of Dirichlet L -functions with the weight of Gauss sums, Advances in Mathematics 31 (2002), 517-526. (2002) MR1959549
  8. Balasubramanian, R., 10.4064/aa-38-3-273-283, Acta Arith. 38 (1980), 273-283. (1980) MR0602193DOI10.4064/aa-38-3-273-283
  9. Titchmarsh, E. C., The Theory of the Riemannn Zeta-function, Oxford (1951). (1951) MR0046485
  10. Ivic, A., The Riemann zeta-function, The Theory of the Riemann Zeta-Function with Applications, New York: Wiley (1985). (1985) Zbl0583.10021MR0792089
  11. Pan, C. D., Pan, C. B., Elements of the Analytic Number Theory, Science Press, Beijing (1991), Chinese. (1991) 

NotesEmbed ?

top

You must be logged in to post comments.