On a kind of generalized Lehmer problem

Rong Ma; Yulong Zhang

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 1135-1146
  • ISSN: 0011-4642

Abstract

top
For 1 c p - 1 , let E 1 , E 2 , , E m be fixed numbers of the set { 0 , 1 } , and let a 1 , a 2 , , a m ( 1 a i p , i = 1 , 2 , , m ) be of opposite parity with E 1 , E 2 , , E m respectively such that a 1 a 2 a m c ( mod p ) . Let N ( c , m , p ) = 1 2 m - 1 a 1 = 1 p - 1 a 2 = 1 p - 1 a m = 1 p - 1 a 1 a 2 a m c ( mod p ) ( 1 - ( - 1 ) a 1 + E 1 ) ( 1 - ( - 1 ) a 2 + E 2 ) ( 1 - ( - 1 ) a m + E m ) . We are interested in the mean value of the sums c = 1 p - 1 E 2 ( c , m , p ) , where E ( c , m , p ) = N ( c , m , p ) - ( ( p - 1 ) m - 1 ) / ( 2 m - 1 ) for the odd prime p and any integers m 2 . When m = 2 , c = 1 , it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.

How to cite

top

Ma, Rong, and Zhang, Yulong. "On a kind of generalized Lehmer problem." Czechoslovak Mathematical Journal 62.4 (2012): 1135-1146. <http://eudml.org/doc/246636>.

@article{Ma2012,
abstract = {For $1\le c\le p-1$, let $E_1,E_2,\dots ,E_m$ be fixed numbers of the set $\lbrace 0,1\rbrace $, and let $a_1, a_2,\dots , a_m$$(1\le a_i\le p$, $i=1,2,\dots , m)$ be of opposite parity with $E_1,E_2,\dots ,E_m$ respectively such that $a_1a_2\dots a_m\equiv c\hspace\{4.44443pt\}(\@mod \; p)$. Let \begin\{equation*\} N(c,m,p)=\frac\{1\}\{2^\{m-1\}\}\mathop \{\mathop \{\sum \}\_\{a\_1=1\}^\{p-1\} \mathop \{\sum \}\_\{a\_2=1\}^\{p-1\}\dots \mathop \{\sum \}\_\{a\_m=1\}^\{p-1\}\} \_\{a\_1a\_2\dots a\_m\equiv c\hspace\{10.0pt\}(\@mod \; p)\} (1-(-1)^\{a\_1+E\_1\})(1-(-1)^\{a\_2+E\_2\})\dots (1-(-1)^\{a\_m+E\_m\}). \end\{equation*\} We are interested in the mean value of the sums \begin\{equation*\} \sum \_\{c=1\}^\{p-1\}E^2(c,m,p), \end\{equation*\} where $ E(c,m,p)=N(c,m,p)-(\{(p-1)^\{m-1\}\})/(\{2^\{m-1\}\})$ for the odd prime $p$ and any integers $m\ge 2$. When $m=2$, $c=1$, it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.},
author = {Ma, Rong, Zhang, Yulong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lehmer problem; character sum; Dirichlet $L$-function; asymptotic formula; Lehmer problem; character sum; Dirichlet -function; asymptotic formula},
language = {eng},
number = {4},
pages = {1135-1146},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a kind of generalized Lehmer problem},
url = {http://eudml.org/doc/246636},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Ma, Rong
AU - Zhang, Yulong
TI - On a kind of generalized Lehmer problem
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 1135
EP - 1146
AB - For $1\le c\le p-1$, let $E_1,E_2,\dots ,E_m$ be fixed numbers of the set $\lbrace 0,1\rbrace $, and let $a_1, a_2,\dots , a_m$$(1\le a_i\le p$, $i=1,2,\dots , m)$ be of opposite parity with $E_1,E_2,\dots ,E_m$ respectively such that $a_1a_2\dots a_m\equiv c\hspace{4.44443pt}(\@mod \; p)$. Let \begin{equation*} N(c,m,p)=\frac{1}{2^{m-1}}\mathop {\mathop {\sum }_{a_1=1}^{p-1} \mathop {\sum }_{a_2=1}^{p-1}\dots \mathop {\sum }_{a_m=1}^{p-1}} _{a_1a_2\dots a_m\equiv c\hspace{10.0pt}(\@mod \; p)} (1-(-1)^{a_1+E_1})(1-(-1)^{a_2+E_2})\dots (1-(-1)^{a_m+E_m}). \end{equation*} We are interested in the mean value of the sums \begin{equation*} \sum _{c=1}^{p-1}E^2(c,m,p), \end{equation*} where $ E(c,m,p)=N(c,m,p)-({(p-1)^{m-1}})/({2^{m-1}})$ for the odd prime $p$ and any integers $m\ge 2$. When $m=2$, $c=1$, it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.
LA - eng
KW - Lehmer problem; character sum; Dirichlet $L$-function; asymptotic formula; Lehmer problem; character sum; Dirichlet -function; asymptotic formula
UR - http://eudml.org/doc/246636
ER -

References

top
  1. Apostol, T. M., Introduction to Analytic Number Theory, Springer New York (1976). (1976) Zbl0335.10001MR0434929
  2. Guy, R. K., Unsolved Problems in Number Theory, Springer New York-Heidelberg-Berlin (1981). (1981) Zbl0474.10001MR0656313
  3. Ma, R., Zhang, J., Zhang, Y., 10.1007/s12044-009-0046-8, Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 411-421. (2009) MR2647187DOI10.1007/s12044-009-0046-8
  4. Ma, R., Yi, Y., Zhang, Y., 10.1007/s10587-010-0056-9, Czech. Math. J. 60 (2010), 597-620. (2010) Zbl1224.11077MR2672404DOI10.1007/s10587-010-0056-9
  5. Xu, Z., Zhang, W., 10.4064/aa121-2-4, Acta Arith. 121 (2006), 149-160. (2006) Zbl1153.11046MR2216139DOI10.4064/aa121-2-4
  6. Xu, Z., Zhang, W., 10.1016/j.jmaa.2005.07.054, J. Math. Anal. Appl 320 (2006), 756-770. (2006) Zbl1098.11050MR2225991DOI10.1016/j.jmaa.2005.07.054
  7. Zhang, W., On a problem of D. H. Lehmer and its generalization, Compos. Math. 86 (1993), 307-316. (1993) Zbl0783.11003MR1219630
  8. Zhang, W., A problem of D. H. Lehmer and its generalization (II), Compos. Math. 91 (1994), 47-56. (1994) Zbl0798.11001MR1273925

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.