A cohomological Steinness criterion for holomorphically spreadable complex spaces
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 3, page 655-667
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topVâjâitu, Viorel. "A cohomological Steinness criterion for holomorphically spreadable complex spaces." Czechoslovak Mathematical Journal 60.3 (2010): 655-667. <http://eudml.org/doc/38033>.
@article{Vâjâitu2010,
abstract = {Let $X$ be a complex space of dimension $n$, not necessarily reduced, whose cohomology groups $H^1(X,\{\mathcal \{O\}\}), \ldots , H^\{n-1\}(X,\{\mathcal \{O\}\})$ are of finite dimension (as complex vector spaces). We show that $X$ is Stein (resp., $1$-convex) if, and only if, $X$ is holomorphically spreadable (resp., $X$ is holomorphically spreadable at infinity). This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for $1$-convexity.},
author = {Vâjâitu, Viorel},
journal = {Czechoslovak Mathematical Journal},
keywords = {Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space; Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space},
language = {eng},
number = {3},
pages = {655-667},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A cohomological Steinness criterion for holomorphically spreadable complex spaces},
url = {http://eudml.org/doc/38033},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Vâjâitu, Viorel
TI - A cohomological Steinness criterion for holomorphically spreadable complex spaces
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 655
EP - 667
AB - Let $X$ be a complex space of dimension $n$, not necessarily reduced, whose cohomology groups $H^1(X,{\mathcal {O}}), \ldots , H^{n-1}(X,{\mathcal {O}})$ are of finite dimension (as complex vector spaces). We show that $X$ is Stein (resp., $1$-convex) if, and only if, $X$ is holomorphically spreadable (resp., $X$ is holomorphically spreadable at infinity). This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for $1$-convexity.
LA - eng
KW - Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space; Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space
UR - http://eudml.org/doc/38033
ER -
References
top- Alessandrini, L., On the cohomology of a holomorphically separable complex analytic space, Bolletino U.M.I. 1-A (1982), 261-208. (1982) Zbl0491.32005MR0663290
- Bănică, C., Stănaşilă, O., Sur les ouverts de Stein dans un espace complexe, C.R. Acad. Sci. Paris Sér. A--B 268 (1969), 1024-1027. (1969) MR0243114
- Coen, S., Annulation de la cohomologie à valeur dans le faisceau structural et espaces de Stein, Compositio Math. 37 (1978), 63-75. (1978) MR0499295
- Fornæss, J.-E., Narasimhan, R., 10.1007/BF01349254, Math. Ann. 248 (1980), 47-72. (1980) MR0569410DOI10.1007/BF01349254
- Forster, O., 10.1090/S0002-9904-1967-11839-1, Bull. Amer. Math. Soc. 73 (1967), 712-716. (1967) Zbl0163.32102MR0218619DOI10.1090/S0002-9904-1967-11839-1
- Grauert, H., 10.1007/BF01362369, Math. Ann. 129 (1955), 233-259. (1955) MR0071084DOI10.1007/BF01362369
- Gunning, R.-C., Narasimhan, R., 10.1007/BF01360812, Math. Ann. 174 (1967), 103-108. (1967) Zbl0179.11402MR0223560DOI10.1007/BF01360812
- Gunning, R.-C., Rossi, H., Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1965). (1965) Zbl0141.08601MR0180696
- Gunning, R.-C., Introduction to Holomorphic Functions of Several Variables, vol. III, Wadsworth & Brokes (1990). (1990) MR1059457
- Kaup, B., Kaup, L., Holomorphic functions of several variables, An introduction to the fundamental theory. With the assistance of Gottfried Barthel. Translated from the German by Michael Bridgland, de Gruyter Studies in Mathematics, 3, Berlin (1983). (1983) Zbl0528.32001MR0716497
- Khue, N. V., Stein morphisms and Riemann domains over Stein spaces, Acta Math. Vietnam. 10 (1985), 75-92. (1985) MR0842758
- Laufer, H., 10.2307/1970533, Ann. Math. 84 (1966), 102-118. (1966) Zbl0143.30201MR0209520DOI10.2307/1970533
- Narasimhan, R., 10.1007/BF01470950, Math. Ann. 146 (1962), 195-216. (1962) Zbl0131.30801MR0182747DOI10.1007/BF01470950
- Narasimhan, R., Complex analysis in one variable, Birkhäuser (1985). (1985) Zbl0561.30001MR0781130
- Scheja, G., 10.1007/BF01362668, Math. Ann. 157 (1964), 75-94. (1964) Zbl0136.20704MR0176466DOI10.1007/BF01362668
- Serre, J.-P., Quelques problèmes globaux relatifs aux variétés de Stein, Colloque sur les fonctions de plusieurs variables, tenu à Bruxelles (1953), 57-68 Georges Thone, Lige; Masson & Cie, Paris. (1953) Zbl0053.05302MR0064155
- Simha, R. R., On Siu's characterisation of domains of holomorphy, J. Indian Math. Soc. 42 (1978), 1-4, 127-130. (1978) Zbl0493.32012MR0558988
- Siu, Y.-T., 10.1007/BF01110282, Math. Z. 102 (1967), 17-29. (1967) Zbl0167.06802MR0222342DOI10.1007/BF01110282
- Siu, Y.-T., Analytic sheaf cohomology groups of dimension of -dimensional complex spaces, Trans. Amer. Math. Soc. 143 (1969), 77-94. (1969) Zbl0186.40404MR0252684
- Siu, Y.-T., 10.1007/BF01390170, Invent. Math. 38 (1976), 89-100. (1976) Zbl0343.32014MR0435447DOI10.1007/BF01390170
- Siu, Y.-T., Trautmann, G., Gap sheaves and extension of coherent analytic subsheaves, Lect. Notes in Math., vol. 172, Springer-Verlag, Berlin (1976). (1976) MR0287033
- Vâjâitu, V., 10.1016/j.matpur.2004.09.001, J. Math. Pures Appl. 84 (2005), 179-197. (2005) MR2118838DOI10.1016/j.matpur.2004.09.001
- Wiegmann, K.-W., 10.1007/BF01112168, Math. Z. 97 (1967), 251-258. (1967) MR0214813DOI10.1007/BF01112168
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.