A cohomological Steinness criterion for holomorphically spreadable complex spaces

Viorel Vâjâitu

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 3, page 655-667
  • ISSN: 0011-4642

Abstract

top
Let X be a complex space of dimension n , not necessarily reduced, whose cohomology groups H 1 ( X , 𝒪 ) , ... , H n - 1 ( X , 𝒪 ) are of finite dimension (as complex vector spaces). We show that X is Stein (resp., 1 -convex) if, and only if, X is holomorphically spreadable (resp., X is holomorphically spreadable at infinity). This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for 1 -convexity.

How to cite

top

Vâjâitu, Viorel. "A cohomological Steinness criterion for holomorphically spreadable complex spaces." Czechoslovak Mathematical Journal 60.3 (2010): 655-667. <http://eudml.org/doc/38033>.

@article{Vâjâitu2010,
abstract = {Let $X$ be a complex space of dimension $n$, not necessarily reduced, whose cohomology groups $H^1(X,\{\mathcal \{O\}\}), \ldots , H^\{n-1\}(X,\{\mathcal \{O\}\})$ are of finite dimension (as complex vector spaces). We show that $X$ is Stein (resp., $1$-convex) if, and only if, $X$ is holomorphically spreadable (resp., $X$ is holomorphically spreadable at infinity). This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for $1$-convexity.},
author = {Vâjâitu, Viorel},
journal = {Czechoslovak Mathematical Journal},
keywords = {Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space; Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space},
language = {eng},
number = {3},
pages = {655-667},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A cohomological Steinness criterion for holomorphically spreadable complex spaces},
url = {http://eudml.org/doc/38033},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Vâjâitu, Viorel
TI - A cohomological Steinness criterion for holomorphically spreadable complex spaces
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 655
EP - 667
AB - Let $X$ be a complex space of dimension $n$, not necessarily reduced, whose cohomology groups $H^1(X,{\mathcal {O}}), \ldots , H^{n-1}(X,{\mathcal {O}})$ are of finite dimension (as complex vector spaces). We show that $X$ is Stein (resp., $1$-convex) if, and only if, $X$ is holomorphically spreadable (resp., $X$ is holomorphically spreadable at infinity). This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for $1$-convexity.
LA - eng
KW - Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space; Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space
UR - http://eudml.org/doc/38033
ER -

References

top
  1. Alessandrini, L., On the cohomology of a holomorphically separable complex analytic space, Bolletino U.M.I. 1-A (1982), 261-208. (1982) Zbl0491.32005MR0663290
  2. Bănică, C., Stănaşilă, O., Sur les ouverts de Stein dans un espace complexe, C.R. Acad. Sci. Paris Sér. A--B 268 (1969), 1024-1027. (1969) MR0243114
  3. Coen, S., Annulation de la cohomologie à valeur dans le faisceau structural et espaces de Stein, Compositio Math. 37 (1978), 63-75. (1978) MR0499295
  4. Fornæss, J.-E., Narasimhan, R., 10.1007/BF01349254, Math. Ann. 248 (1980), 47-72. (1980) MR0569410DOI10.1007/BF01349254
  5. Forster, O., 10.1090/S0002-9904-1967-11839-1, Bull. Amer. Math. Soc. 73 (1967), 712-716. (1967) Zbl0163.32102MR0218619DOI10.1090/S0002-9904-1967-11839-1
  6. Grauert, H., 10.1007/BF01362369, Math. Ann. 129 (1955), 233-259. (1955) MR0071084DOI10.1007/BF01362369
  7. Gunning, R.-C., Narasimhan, R., 10.1007/BF01360812, Math. Ann. 174 (1967), 103-108. (1967) Zbl0179.11402MR0223560DOI10.1007/BF01360812
  8. Gunning, R.-C., Rossi, H., Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1965). (1965) Zbl0141.08601MR0180696
  9. Gunning, R.-C., Introduction to Holomorphic Functions of Several Variables, vol. III, Wadsworth & Brokes (1990). (1990) MR1059457
  10. Kaup, B., Kaup, L., Holomorphic functions of several variables, An introduction to the fundamental theory. With the assistance of Gottfried Barthel. Translated from the German by Michael Bridgland, de Gruyter Studies in Mathematics, 3, Berlin (1983). (1983) Zbl0528.32001MR0716497
  11. Khue, N. V., Stein morphisms and Riemann domains over Stein spaces, Acta Math. Vietnam. 10 (1985), 75-92. (1985) MR0842758
  12. Laufer, H., 10.2307/1970533, Ann. Math. 84 (1966), 102-118. (1966) Zbl0143.30201MR0209520DOI10.2307/1970533
  13. Narasimhan, R., 10.1007/BF01470950, Math. Ann. 146 (1962), 195-216. (1962) Zbl0131.30801MR0182747DOI10.1007/BF01470950
  14. Narasimhan, R., Complex analysis in one variable, Birkhäuser (1985). (1985) Zbl0561.30001MR0781130
  15. Scheja, G., 10.1007/BF01362668, Math. Ann. 157 (1964), 75-94. (1964) Zbl0136.20704MR0176466DOI10.1007/BF01362668
  16. Serre, J.-P., Quelques problèmes globaux relatifs aux variétés de Stein, Colloque sur les fonctions de plusieurs variables, tenu à Bruxelles (1953), 57-68 Georges Thone, Lige; Masson & Cie, Paris. (1953) Zbl0053.05302MR0064155
  17. Simha, R. R., On Siu's characterisation of domains of holomorphy, J. Indian Math. Soc. 42 (1978), 1-4, 127-130. (1978) Zbl0493.32012MR0558988
  18. Siu, Y.-T., 10.1007/BF01110282, Math. Z. 102 (1967), 17-29. (1967) Zbl0167.06802MR0222342DOI10.1007/BF01110282
  19. Siu, Y.-T., Analytic sheaf cohomology groups of dimension n of n -dimensional complex spaces, Trans. Amer. Math. Soc. 143 (1969), 77-94. (1969) Zbl0186.40404MR0252684
  20. Siu, Y.-T., 10.1007/BF01390170, Invent. Math. 38 (1976), 89-100. (1976) Zbl0343.32014MR0435447DOI10.1007/BF01390170
  21. Siu, Y.-T., Trautmann, G., Gap sheaves and extension of coherent analytic subsheaves, Lect. Notes in Math., vol. 172, Springer-Verlag, Berlin (1976). (1976) MR0287033
  22. Vâjâitu, V., 10.1016/j.matpur.2004.09.001, J. Math. Pures Appl. 84 (2005), 179-197. (2005) MR2118838DOI10.1016/j.matpur.2004.09.001
  23. Wiegmann, K.-W., 10.1007/BF01112168, Math. Z. 97 (1967), 251-258. (1967) MR0214813DOI10.1007/BF01112168

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.