On asymptotic behavior of solutions of n -th order Emden-Fowler differential equations with advanced argument

Roman Koplatadze

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 3, page 817-833
  • ISSN: 0011-4642

Abstract

top
We study oscillatory properties of solutions of the Emden-Fowler type differential equation u ( n ) ( t ) + p ( t ) | u ( σ ( t ) ) | λ sign u ( σ ( t ) ) = 0 , where 0 < λ < 1 , p L loc ( + ; ) , σ C ( + ; + ) and σ ( t ) t for t + . Sufficient (necessary and sufficient) conditions of new type for oscillation of solutions of the above equation are established. Some results given in this paper generalize the results obtained in the paper by Kiguradze and Stavroulakis (1998).

How to cite

top

Koplatadze, Roman. "On asymptotic behavior of solutions of $n$-th order Emden-Fowler differential equations with advanced argument." Czechoslovak Mathematical Journal 60.3 (2010): 817-833. <http://eudml.org/doc/38043>.

@article{Koplatadze2010,
abstract = {We study oscillatory properties of solutions of the Emden-Fowler type differential equation \[u^\{(n)\}(t)+p(t)\big |u(\sigma (t))\big |^\lambda \operatorname\{sign\} u(\sigma (t))=0,\] where $0<\lambda <1$, $p\in L_\{\rm loc \}(\mathbb \{R\}_+;\mathbb \{R\})$, $\sigma \in C(\mathbb \{R\}_+;\mathbb \{R\}_+)$ and $\sigma (t)\ge t$ for $t\in \mathbb \{R\}_+$. Sufficient (necessary and sufficient) conditions of new type for oscillation of solutions of the above equation are established. Some results given in this paper generalize the results obtained in the paper by Kiguradze and Stavroulakis (1998).},
author = {Koplatadze, Roman},
journal = {Czechoslovak Mathematical Journal},
keywords = {proper solution; property A; property B ; proper solution; property , property },
language = {eng},
number = {3},
pages = {817-833},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On asymptotic behavior of solutions of $n$-th order Emden-Fowler differential equations with advanced argument},
url = {http://eudml.org/doc/38043},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Koplatadze, Roman
TI - On asymptotic behavior of solutions of $n$-th order Emden-Fowler differential equations with advanced argument
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 817
EP - 833
AB - We study oscillatory properties of solutions of the Emden-Fowler type differential equation \[u^{(n)}(t)+p(t)\big |u(\sigma (t))\big |^\lambda \operatorname{sign} u(\sigma (t))=0,\] where $0<\lambda <1$, $p\in L_{\rm loc }(\mathbb {R}_+;\mathbb {R})$, $\sigma \in C(\mathbb {R}_+;\mathbb {R}_+)$ and $\sigma (t)\ge t$ for $t\in \mathbb {R}_+$. Sufficient (necessary and sufficient) conditions of new type for oscillation of solutions of the above equation are established. Some results given in this paper generalize the results obtained in the paper by Kiguradze and Stavroulakis (1998).
LA - eng
KW - proper solution; property A; property B ; proper solution; property , property
UR - http://eudml.org/doc/38043
ER -

References

top
  1. Kiguradze, I., Stavroulakis, I., 10.1080/00036819808840679, Appl. Anal. 70 (1998), 97-112. (1998) Zbl1013.34068MR1671550DOI10.1080/00036819808840679
  2. Kondrat'ev, V. A., Oscillatory properties of solutions of the equation y ( n ) + p ( x ) y = 0 , Russian Trudy Moskov. Mat. Obsc. 10 (1961), 419-436. (1961) MR0141842
  3. Koplatadze, R., 10.1016/0022-247X(73)90127-3, J. Math. Anal. Appl. 42 (1973), 148-157. (1973) Zbl0255.34069MR0322313DOI10.1016/0022-247X(73)90127-3
  4. Koplatadze, R., A note on the oscillation of the solutions of higher order differential inequalities and equations with retarded argument, Russian Differentsial'nye Uravneniya 10 (1974), 1400-1405, 1538. (1974) MR0358026
  5. Koplatadze, R., Chanturia, T., Oscillatory properties of differential equations with deviating argument, Russian With Georgian and English summaries. Izdat. Tbilis. Univ., Tbilisi (1977), 115. (1977) MR0492725
  6. Koplatadze, R., Some properties of the solutions of nonlinear differential inequalities and equations with retarded argument, Russian Differentsial'nye Uravneniya 12 (1976), 1971-1984. (1976) MR0466843
  7. Koplatadze, R., On oscillatory properties of solutions of functional-differential equations, Mem. Differential Equations Math. Phys. 3 (1994), 179 pp. (1994) Zbl0843.34070MR1375838
  8. Koplatadze, R., On asymptotic behaviour of solutions of functional-differential equations, Equadiff 8 (Bratislava, 1993). Tatra Mt. Math. Publ. 4 (1994), 143-146. (1994) Zbl0809.34081MR1298463
  9. Koplatadze, R., 10.1016/j.jmaa.2006.07.085, J. Math. Anal. Appl. 330 (2007), 483-510. (2007) MR2302938DOI10.1016/j.jmaa.2006.07.085
  10. Graef, J., Koplatadze, R., Kvinikadze, G., 10.1016/j.jmaa.2004.12.034, J. Math. Anal. Appl. 306 (2005), 136-160. (2005) Zbl1069.34088MR2132894DOI10.1016/j.jmaa.2004.12.034
  11. Koplatadze, R., On asymptotic behavior of solutions of Emden-Fowler advanced differential equation, Math. Modeling and Computer Simulation of Material Technologies. Proceedings of the 5-th International Conference Ariel 2 (2008), 731-735. (2008) 
  12. Koplatadze, R., On oscillatory properties of solutions of generalized Emden-Fowler type differential equations, Proc. A. Razmadze Math. Inst. 145 (2007), 117-121. (2007) Zbl1154.34323MR2387454
  13. Koplatadze, R., On asymptotic behavior of solutions of almost linear and essentially nonlinear differential equations, Nonlinear Anal. Theory, Methods and Appl. (accepted). 
  14. Gramatikopoulos, M. K., Koplatadze, R., Kvinikadze, G., 10.1016/S0022-247X(03)00356-1, J. Math. Anal. Appl. 284 (2003), 294-314. (2003) MR1996134DOI10.1016/S0022-247X(03)00356-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.