Some sufficient conditions for the existence of positive solutions to the equation in bounded domains
Annales de l'I.H.P. Analyse non linéaire (1996)
- Volume: 13, Issue: 2, page 185-227
- ISSN: 0294-1449
Access Full Article
topHow to cite
topPassaseo, Donato. "Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u + a (x) u = u^{2^*-1}$ in bounded domains." Annales de l'I.H.P. Analyse non linéaire 13.2 (1996): 185-227. <http://eudml.org/doc/78380>.
@article{Passaseo1996,
author = {Passaseo, Donato},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semilinear elliptic equation; critical exponent; multiple solutions},
language = {eng},
number = {2},
pages = {185-227},
publisher = {Gauthier-Villars},
title = {Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u + a (x) u = u^\{2^*-1\}$ in bounded domains},
url = {http://eudml.org/doc/78380},
volume = {13},
year = {1996},
}
TY - JOUR
AU - Passaseo, Donato
TI - Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u + a (x) u = u^{2^*-1}$ in bounded domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 2
SP - 185
EP - 227
LA - eng
KW - semilinear elliptic equation; critical exponent; multiple solutions
UR - http://eudml.org/doc/78380
ER -
References
top- [1] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., t. 14, 1973, pp. 349-381. Zbl0273.49063MR370183
- [2] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. Zbl0649.35033MR929280
- [3] V. Benci and G. Cerami, Existence of positive solutions of the equation -Δu + a(x)u = uN+2/N-2 in RN, J. Funct. Anal., Vol. 88, No. 1, 1989, pp. 90-117. Zbl0705.35042MR1033915
- [4] H. Brezis, Elliptic equations with limiting Sobolev exponents, The impact of topology, In "Proceedings 50th Anniv. Courant Inst"., Comm. Pure Appl. Math., Vol. 39, 1986, pp. 517-539. Zbl0601.35043MR861481
- [5] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potential, J. Math. Pures Appl., Vol. 58, 1979, pp. 137-151. Zbl0408.35025MR539217
- [6] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 437-477. Zbl0541.35029MR709644
- [7] J.M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, Sér. I Math., Vol. 299, 1984, pp. 209-212. Zbl0569.35032MR762722
- [8] E.N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc., Vol. 20, 1988, pp. 600-602. Zbl0646.35027MR980763
- [9] W. Ding, Positive solutions of Δu + un+2/ n-2 = 0 on contractible domains, J. Partial Differential Equations2, No. 4, 1989, pp. 83-88. Zbl0694.35067MR1027983
- [10] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, In "Mathematical Analysis and Applications", L. Nachbin, Ed.), Part A. Academic Press, Orlando, FL., 1981, pp. 370-401. Zbl0469.35052
- [11] J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., Vol. 28, 1975, pp. 567-597. Zbl0325.35038MR477445
- [12] P.L. Lions, The concentration - compactness principle in the calculus of variations: the limit case, Rev. Mat. Iberoamericana1, 1985, pp. 145-201; 45-121. Zbl0704.49005MR834360
- [13] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Vol. 65, 1989, pp. 147-166. Zbl0701.35068MR1011429
- [14] D. Passaseo, Esistenza e molteplicità di soluzioni positive per l'equazione -Δu+a(x)u = u2*-1 in domini limitati, Preprint, No. 563, Dip. Mat. Pisa, 1990.
- [15] D. Passaseo, Esistenza e molteplicità di soluzioni positive per l'equazione -Δu+(α(x)+ λ)u= un+2/n-2 in Rn, Preprint, No. 565, Dip. Mat. Pisa, 1990. MR1159995
- [16] D. Passaseo, Su alcune successioni di soluzioni positive di problemi ellittici con esponente critico, Rend. Mat. Acc. Lincei s. 9.v. 3, 1992, pp. 15-21. Zbl0778.35036
- [17] D. Passaseo, Elliptic equations with critical nonlinearity, The effect of the domain shape on the number of positive solutions, In preparation.
- [18] D. Passaseo, Multiplicity of positive solutions for the equation Δu +λu+u2*-1 = 0 in noncontractible domains, Topological Methods in Nonlinear Analysis, Journal of the J. Schauder Center., Vol. 2, 1993, pp. 343-366. Zbl0810.35029MR1251943
- [19] D. Passaseo, Categoria relativa e molteplicità di soluzioni positive per l'equazione Δu +u2*-1 = 0, Preprint, Dip. Matem. Pisa, No. 701, 1992. MR1151569
- [20] S.I. Pohozaev, Eigenfunctions of the equation Δu+λf(u) = 0, Sov. Math. Dokl., Vol. 6, 1965, pp. 1408-1411. Zbl0141.30202MR192184
- [21 ] O. Rey, Sur un problème variationnel non compact: 1'effect de petits trous dans le domaine, C. R.Acad. Sci. Paris, t. 308, Série I, 1989, pp. 349-352. Zbl0686.35047MR992090
- [22] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., Vol. 187, 1984, pp. 511-517. Zbl0535.35025MR760051
- [23] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl., Vol. 110, 1976, pp. 353-372. Zbl0353.46018MR463908
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.