Some sufficient conditions for the existence of positive solutions to the equation - Δ u + a ( x ) u = u 2 * - 1 in bounded domains

Donato Passaseo

Annales de l'I.H.P. Analyse non linéaire (1996)

  • Volume: 13, Issue: 2, page 185-227
  • ISSN: 0294-1449

How to cite

top

Passaseo, Donato. "Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u + a (x) u = u^{2^*-1}$ in bounded domains." Annales de l'I.H.P. Analyse non linéaire 13.2 (1996): 185-227. <http://eudml.org/doc/78380>.

@article{Passaseo1996,
author = {Passaseo, Donato},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {semilinear elliptic equation; critical exponent; multiple solutions},
language = {eng},
number = {2},
pages = {185-227},
publisher = {Gauthier-Villars},
title = {Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u + a (x) u = u^\{2^*-1\}$ in bounded domains},
url = {http://eudml.org/doc/78380},
volume = {13},
year = {1996},
}

TY - JOUR
AU - Passaseo, Donato
TI - Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u + a (x) u = u^{2^*-1}$ in bounded domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1996
PB - Gauthier-Villars
VL - 13
IS - 2
SP - 185
EP - 227
LA - eng
KW - semilinear elliptic equation; critical exponent; multiple solutions
UR - http://eudml.org/doc/78380
ER -

References

top
  1. [1] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., t. 14, 1973, pp. 349-381. Zbl0273.49063MR370183
  2. [2] A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Vol. 41, 1988, pp. 253-294. Zbl0649.35033MR929280
  3. [3] V. Benci and G. Cerami, Existence of positive solutions of the equation -Δu + a(x)u = uN+2/N-2 in RN, J. Funct. Anal., Vol. 88, No. 1, 1989, pp. 90-117. Zbl0705.35042MR1033915
  4. [4] H. Brezis, Elliptic equations with limiting Sobolev exponents, The impact of topology, In "Proceedings 50th Anniv. Courant Inst"., Comm. Pure Appl. Math., Vol. 39, 1986, pp. 517-539. Zbl0601.35043MR861481
  5. [5] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potential, J. Math. Pures Appl., Vol. 58, 1979, pp. 137-151. Zbl0408.35025MR539217
  6. [6] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 437-477. Zbl0541.35029MR709644
  7. [7] J.M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, Sér. I Math., Vol. 299, 1984, pp. 209-212. Zbl0569.35032MR762722
  8. [8] E.N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc., Vol. 20, 1988, pp. 600-602. Zbl0646.35027MR980763
  9. [9] W. Ding, Positive solutions of Δu + un+2/ n-2 = 0 on contractible domains, J. Partial Differential Equations2, No. 4, 1989, pp. 83-88. Zbl0694.35067MR1027983
  10. [10] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, In "Mathematical Analysis and Applications", L. Nachbin, Ed.), Part A. Academic Press, Orlando, FL., 1981, pp. 370-401. Zbl0469.35052
  11. [11] J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., Vol. 28, 1975, pp. 567-597. Zbl0325.35038MR477445
  12. [12] P.L. Lions, The concentration - compactness principle in the calculus of variations: the limit case, Rev. Mat. Iberoamericana1, 1985, pp. 145-201; 45-121. Zbl0704.49005MR834360
  13. [13] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractible domains, Manuscripta Math., Vol. 65, 1989, pp. 147-166. Zbl0701.35068MR1011429
  14. [14] D. Passaseo, Esistenza e molteplicità di soluzioni positive per l'equazione -Δu+a(x)u = u2*-1 in domini limitati, Preprint, No. 563, Dip. Mat. Pisa, 1990. 
  15. [15] D. Passaseo, Esistenza e molteplicità di soluzioni positive per l'equazione -Δu+(α(x)+ λ)u= un+2/n-2 in Rn, Preprint, No. 565, Dip. Mat. Pisa, 1990. MR1159995
  16. [16] D. Passaseo, Su alcune successioni di soluzioni positive di problemi ellittici con esponente critico, Rend. Mat. Acc. Lincei s. 9.v. 3, 1992, pp. 15-21. Zbl0778.35036
  17. [17] D. Passaseo, Elliptic equations with critical nonlinearity, The effect of the domain shape on the number of positive solutions, In preparation. 
  18. [18] D. Passaseo, Multiplicity of positive solutions for the equation Δu +λu+u2*-1 = 0 in noncontractible domains, Topological Methods in Nonlinear Analysis, Journal of the J. Schauder Center., Vol. 2, 1993, pp. 343-366. Zbl0810.35029MR1251943
  19. [19] D. Passaseo, Categoria relativa e molteplicità di soluzioni positive per l'equazione Δu +u2*-1 = 0, Preprint, Dip. Matem. Pisa, No. 701, 1992. MR1151569
  20. [20] S.I. Pohozaev, Eigenfunctions of the equation Δu+λf(u) = 0, Sov. Math. Dokl., Vol. 6, 1965, pp. 1408-1411. Zbl0141.30202MR192184
  21. [21 ] O. Rey, Sur un problème variationnel non compact: 1'effect de petits trous dans le domaine, C. R.Acad. Sci. Paris, t. 308, Série I, 1989, pp. 349-352. Zbl0686.35047MR992090
  22. [22] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., Vol. 187, 1984, pp. 511-517. Zbl0535.35025MR760051
  23. [23] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl., Vol. 110, 1976, pp. 353-372. Zbl0353.46018MR463908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.