Entropy solution for anisotropic reaction-diffusion-advection systems with L1 data.

Mostafa Bendahmane; Mazen Saad

Revista Matemática Complutense (2005)

  • Volume: 18, Issue: 1, page 49-67
  • ISSN: 1139-1138

Abstract

top
In this paper, we study the question of existence and uniqueness of entropy solutions for a system of nonlinear partial differential equations with general anisotropic diffusivity and transport effects, supplemented with no-flux boundary conditions, modeling the spread of an epidemic disease through a heterogeneous habitat.

How to cite

top

Bendahmane, Mostafa, and Saad, Mazen. "Entropy solution for anisotropic reaction-diffusion-advection systems with L1 data.." Revista Matemática Complutense 18.1 (2005): 49-67. <http://eudml.org/doc/38157>.

@article{Bendahmane2005,
abstract = {In this paper, we study the question of existence and uniqueness of entropy solutions for a system of nonlinear partial differential equations with general anisotropic diffusivity and transport effects, supplemented with no-flux boundary conditions, modeling the spread of an epidemic disease through a heterogeneous habitat.},
author = {Bendahmane, Mostafa, Saad, Mazen},
journal = {Revista Matemática Complutense},
keywords = {Ecuaciones en derivadas parciales no lineales; Ecuaciones de reacción-difusión; Ecuaciones parabólicas; Unicidad; Epidemiología; uniqueness; existence; no-flux boundary conditions},
language = {eng},
number = {1},
pages = {49-67},
title = {Entropy solution for anisotropic reaction-diffusion-advection systems with L1 data.},
url = {http://eudml.org/doc/38157},
volume = {18},
year = {2005},
}

TY - JOUR
AU - Bendahmane, Mostafa
AU - Saad, Mazen
TI - Entropy solution for anisotropic reaction-diffusion-advection systems with L1 data.
JO - Revista Matemática Complutense
PY - 2005
VL - 18
IS - 1
SP - 49
EP - 67
AB - In this paper, we study the question of existence and uniqueness of entropy solutions for a system of nonlinear partial differential equations with general anisotropic diffusivity and transport effects, supplemented with no-flux boundary conditions, modeling the spread of an epidemic disease through a heterogeneous habitat.
LA - eng
KW - Ecuaciones en derivadas parciales no lineales; Ecuaciones de reacción-difusión; Ecuaciones parabólicas; Unicidad; Epidemiología; uniqueness; existence; no-flux boundary conditions
UR - http://eudml.org/doc/38157
ER -

NotesEmbed ?

top

You must be logged in to post comments.