Entropy solution for anisotropic reaction-diffusion-advection systems with L1 data.

Mostafa Bendahmane; Mazen Saad

Revista Matemática Complutense (2005)

  • Volume: 18, Issue: 1, page 49-67
  • ISSN: 1139-1138

Abstract

top
In this paper, we study the question of existence and uniqueness of entropy solutions for a system of nonlinear partial differential equations with general anisotropic diffusivity and transport effects, supplemented with no-flux boundary conditions, modeling the spread of an epidemic disease through a heterogeneous habitat.

How to cite

top

Bendahmane, Mostafa, and Saad, Mazen. "Entropy solution for anisotropic reaction-diffusion-advection systems with L1 data.." Revista Matemática Complutense 18.1 (2005): 49-67. <http://eudml.org/doc/38157>.

@article{Bendahmane2005,
abstract = {In this paper, we study the question of existence and uniqueness of entropy solutions for a system of nonlinear partial differential equations with general anisotropic diffusivity and transport effects, supplemented with no-flux boundary conditions, modeling the spread of an epidemic disease through a heterogeneous habitat.},
author = {Bendahmane, Mostafa, Saad, Mazen},
journal = {Revista Matemática Complutense},
keywords = {Ecuaciones en derivadas parciales no lineales; Ecuaciones de reacción-difusión; Ecuaciones parabólicas; Unicidad; Epidemiología; uniqueness; existence; no-flux boundary conditions},
language = {eng},
number = {1},
pages = {49-67},
title = {Entropy solution for anisotropic reaction-diffusion-advection systems with L1 data.},
url = {http://eudml.org/doc/38157},
volume = {18},
year = {2005},
}

TY - JOUR
AU - Bendahmane, Mostafa
AU - Saad, Mazen
TI - Entropy solution for anisotropic reaction-diffusion-advection systems with L1 data.
JO - Revista Matemática Complutense
PY - 2005
VL - 18
IS - 1
SP - 49
EP - 67
AB - In this paper, we study the question of existence and uniqueness of entropy solutions for a system of nonlinear partial differential equations with general anisotropic diffusivity and transport effects, supplemented with no-flux boundary conditions, modeling the spread of an epidemic disease through a heterogeneous habitat.
LA - eng
KW - Ecuaciones en derivadas parciales no lineales; Ecuaciones de reacción-difusión; Ecuaciones parabólicas; Unicidad; Epidemiología; uniqueness; existence; no-flux boundary conditions
UR - http://eudml.org/doc/38157
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.