Dynamical instability of symmetric vortices.
Revista Matemática Iberoamericana (2001)
- Volume: 17, Issue: 2, page 409-419
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topAlmeida, Luis, and Guo, Yan. "Dynamical instability of symmetric vortices.." Revista Matemática Iberoamericana 17.2 (2001): 409-419. <http://eudml.org/doc/39682>.
@article{Almeida2001,
abstract = {Using the Maxwell-Higgs model, we prove that linearly unstable symmetric vortices in the Ginzburg-Landau theory are dynamically unstable in the H1 norm (which is the natural norm for the problem).In this work we study the dynamic instability of the radial solutions of the Ginzburg-Landau equations in R2 (...)},
author = {Almeida, Luis, Guo, Yan},
journal = {Revista Matemática Iberoamericana},
keywords = {Inestabilidad; Materia de los vórtices; Ecuación de Ginzburg-Landau; Ginzburg-Landau equations in ; radial solutions},
language = {eng},
number = {2},
pages = {409-419},
title = {Dynamical instability of symmetric vortices.},
url = {http://eudml.org/doc/39682},
volume = {17},
year = {2001},
}
TY - JOUR
AU - Almeida, Luis
AU - Guo, Yan
TI - Dynamical instability of symmetric vortices.
JO - Revista Matemática Iberoamericana
PY - 2001
VL - 17
IS - 2
SP - 409
EP - 419
AB - Using the Maxwell-Higgs model, we prove that linearly unstable symmetric vortices in the Ginzburg-Landau theory are dynamically unstable in the H1 norm (which is the natural norm for the problem).In this work we study the dynamic instability of the radial solutions of the Ginzburg-Landau equations in R2 (...)
LA - eng
KW - Inestabilidad; Materia de los vórtices; Ecuación de Ginzburg-Landau; Ginzburg-Landau equations in ; radial solutions
UR - http://eudml.org/doc/39682
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.