top
Sea G un grafo no dirigido con n vértices y m aristas. Un p-Centro de G es un conjunto de p puntos en el que se minimiza la distancia al vértice más lejano. Esta distancia mínima es el p-Radio de G. Un Centro Local es un punto c a la misma distancia (llamada rango del centro local) de un conjunto no vacío de vértices que no son todos accesibles a través de un mismo vértice adyacente a c. Todo p-radio es el rango de algún centro local, por tanto, para resolver el problema del p-centro basta encontrar el menor rango r tal que existe un conjunto de p puntos que cubren a todos los vértices dentro de una distancia r. Este valor r es el p-radio y el correspondiente conjunto es un p-centro. Para encontrar estos conjuntos basta considerar los r-Extremos, puntos a distancia r de algún vértice. En este trabajo se utilizan los r-extremos para construir un sencillo algoritmo de complejidad O(mP·nP+1·log n) que es comparado experimentalmente con el procedimiento de relajación de Handler (1979).
Moreno Pérez, José Andrés. "Un nuevo resultado sobre la complejidad del problema del p-centro.." Trabajos de Investigación Operativa 5.1 (1990): 61-71. <http://eudml.org/doc/40611>.
@article{MorenoPérez1990, abstract = {Sea G un grafo no dirigido con n vértices y m aristas. Un p-Centro de G es un conjunto de p puntos en el que se minimiza la distancia al vértice más lejano. Esta distancia mínima es el p-Radio de G. Un Centro Local es un punto c a la misma distancia (llamada rango del centro local) de un conjunto no vacío de vértices que no son todos accesibles a través de un mismo vértice adyacente a c. Todo p-radio es el rango de algún centro local, por tanto, para resolver el problema del p-centro basta encontrar el menor rango r tal que existe un conjunto de p puntos que cubren a todos los vértices dentro de una distancia r. Este valor r es el p-radio y el correspondiente conjunto es un p-centro. Para encontrar estos conjuntos basta considerar los r-Extremos, puntos a distancia r de algún vértice. En este trabajo se utilizan los r-extremos para construir un sencillo algoritmo de complejidad O(mP·nP+1·log n) que es comparado experimentalmente con el procedimiento de relajación de Handler (1979).}, author = {Moreno Pérez, José Andrés}, journal = {Trabajos de Investigación Operativa}, keywords = {Teoría de grafos; Grafos; facility location; undirected graph; p-center; p-radius; local center}, language = {spa}, number = {1}, pages = {61-71}, title = {Un nuevo resultado sobre la complejidad del problema del p-centro.}, url = {http://eudml.org/doc/40611}, volume = {5}, year = {1990}, }
TY - JOUR AU - Moreno Pérez, José Andrés TI - Un nuevo resultado sobre la complejidad del problema del p-centro. JO - Trabajos de Investigación Operativa PY - 1990 VL - 5 IS - 1 SP - 61 EP - 71 AB - Sea G un grafo no dirigido con n vértices y m aristas. Un p-Centro de G es un conjunto de p puntos en el que se minimiza la distancia al vértice más lejano. Esta distancia mínima es el p-Radio de G. Un Centro Local es un punto c a la misma distancia (llamada rango del centro local) de un conjunto no vacío de vértices que no son todos accesibles a través de un mismo vértice adyacente a c. Todo p-radio es el rango de algún centro local, por tanto, para resolver el problema del p-centro basta encontrar el menor rango r tal que existe un conjunto de p puntos que cubren a todos los vértices dentro de una distancia r. Este valor r es el p-radio y el correspondiente conjunto es un p-centro. Para encontrar estos conjuntos basta considerar los r-Extremos, puntos a distancia r de algún vértice. En este trabajo se utilizan los r-extremos para construir un sencillo algoritmo de complejidad O(mP·nP+1·log n) que es comparado experimentalmente con el procedimiento de relajación de Handler (1979). LA - spa KW - Teoría de grafos; Grafos; facility location; undirected graph; p-center; p-radius; local center UR - http://eudml.org/doc/40611 ER -