Non local reaction-diffusion equations modelling predator-prey coevolution.
Angel Calsina; Carles Perelló; Joan Saldaña
Publicacions Matemàtiques (1994)
- Volume: 38, Issue: 2, page 315-325
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topCalsina, Angel, Perelló, Carles, and Saldaña, Joan. "Non local reaction-diffusion equations modelling predator-prey coevolution.." Publicacions Matemàtiques 38.2 (1994): 315-325. <http://eudml.org/doc/41187>.
@article{Calsina1994,
abstract = {In this paper we examine a predator-prey system with a characteristic of the predator subject to mutation. The ultimate equilibrium of the system is found by Maynard-Smith et al. by the so-called ESS (Evolutionary Stable Strategy). Using a system of reaction-diffusion equations with non local terms, we conclude that ESS result for the diffusion coefficient tending to zero, without resorting to any optimization criterion.},
author = {Calsina, Angel, Perelló, Carles, Saldaña, Joan},
journal = {Publicacions Matemàtiques},
keywords = {Evolución biológica; Coevolución; Modelos matemáticos; Proceso de difusión; prey-predator system; mutation; Dirichlet boundary conditions; evolutionary stable strategy; equilibrium solution},
language = {eng},
number = {2},
pages = {315-325},
title = {Non local reaction-diffusion equations modelling predator-prey coevolution.},
url = {http://eudml.org/doc/41187},
volume = {38},
year = {1994},
}
TY - JOUR
AU - Calsina, Angel
AU - Perelló, Carles
AU - Saldaña, Joan
TI - Non local reaction-diffusion equations modelling predator-prey coevolution.
JO - Publicacions Matemàtiques
PY - 1994
VL - 38
IS - 2
SP - 315
EP - 325
AB - In this paper we examine a predator-prey system with a characteristic of the predator subject to mutation. The ultimate equilibrium of the system is found by Maynard-Smith et al. by the so-called ESS (Evolutionary Stable Strategy). Using a system of reaction-diffusion equations with non local terms, we conclude that ESS result for the diffusion coefficient tending to zero, without resorting to any optimization criterion.
LA - eng
KW - Evolución biológica; Coevolución; Modelos matemáticos; Proceso de difusión; prey-predator system; mutation; Dirichlet boundary conditions; evolutionary stable strategy; equilibrium solution
UR - http://eudml.org/doc/41187
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.