Non local reaction-diffusion equations modelling predator-prey coevolution.

Angel Calsina; Carles Perelló; Joan Saldaña

Publicacions Matemàtiques (1994)

  • Volume: 38, Issue: 2, page 315-325
  • ISSN: 0214-1493

Abstract

top
In this paper we examine a predator-prey system with a characteristic of the predator subject to mutation. The ultimate equilibrium of the system is found by Maynard-Smith et al. by the so-called ESS (Evolutionary Stable Strategy). Using a system of reaction-diffusion equations with non local terms, we conclude that ESS result for the diffusion coefficient tending to zero, without resorting to any optimization criterion.

How to cite

top

Calsina, Angel, Perelló, Carles, and Saldaña, Joan. "Non local reaction-diffusion equations modelling predator-prey coevolution.." Publicacions Matemàtiques 38.2 (1994): 315-325. <http://eudml.org/doc/41187>.

@article{Calsina1994,
abstract = {In this paper we examine a predator-prey system with a characteristic of the predator subject to mutation. The ultimate equilibrium of the system is found by Maynard-Smith et al. by the so-called ESS (Evolutionary Stable Strategy). Using a system of reaction-diffusion equations with non local terms, we conclude that ESS result for the diffusion coefficient tending to zero, without resorting to any optimization criterion.},
author = {Calsina, Angel, Perelló, Carles, Saldaña, Joan},
journal = {Publicacions Matemàtiques},
keywords = {Evolución biológica; Coevolución; Modelos matemáticos; Proceso de difusión; prey-predator system; mutation; Dirichlet boundary conditions; evolutionary stable strategy; equilibrium solution},
language = {eng},
number = {2},
pages = {315-325},
title = {Non local reaction-diffusion equations modelling predator-prey coevolution.},
url = {http://eudml.org/doc/41187},
volume = {38},
year = {1994},
}

TY - JOUR
AU - Calsina, Angel
AU - Perelló, Carles
AU - Saldaña, Joan
TI - Non local reaction-diffusion equations modelling predator-prey coevolution.
JO - Publicacions Matemàtiques
PY - 1994
VL - 38
IS - 2
SP - 315
EP - 325
AB - In this paper we examine a predator-prey system with a characteristic of the predator subject to mutation. The ultimate equilibrium of the system is found by Maynard-Smith et al. by the so-called ESS (Evolutionary Stable Strategy). Using a system of reaction-diffusion equations with non local terms, we conclude that ESS result for the diffusion coefficient tending to zero, without resorting to any optimization criterion.
LA - eng
KW - Evolución biológica; Coevolución; Modelos matemáticos; Proceso de difusión; prey-predator system; mutation; Dirichlet boundary conditions; evolutionary stable strategy; equilibrium solution
UR - http://eudml.org/doc/41187
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.