Integrability of a linear center perturbed by a fifth degree homogeneous polynomial.
Publicacions Matemàtiques (1997)
- Volume: 41, Issue: 2, page 335-356
- ISSN: 0214-1493
Access Full Article
topAbstract
topHow to cite
topChavarriga, Javier, and Giné, Jaume. "Integrability of a linear center perturbed by a fifth degree homogeneous polynomial.." Publicacions Matemàtiques 41.2 (1997): 335-356. <http://eudml.org/doc/41322>.
@article{Chavarriga1997,
abstract = {In this work we study the integrability of two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fifth degree. We give a simple characterisation for the integrable cases in polar coordinates. Finally we formulate a conjecture about the independence of the two classes of parameters which appear on the system; if this conjecture is true the integrable cases found will be the only possible ones.},
author = {Chavarriga, Javier, Giné, Jaume},
journal = {Publicacions Matemàtiques},
keywords = {Sistemas diferenciales; Polinomios; Sistemas bidimensionales; Invariantes; center; integrability; planar polynomial differential systems; Lyapunov constants},
language = {eng},
number = {2},
pages = {335-356},
title = {Integrability of a linear center perturbed by a fifth degree homogeneous polynomial.},
url = {http://eudml.org/doc/41322},
volume = {41},
year = {1997},
}
TY - JOUR
AU - Chavarriga, Javier
AU - Giné, Jaume
TI - Integrability of a linear center perturbed by a fifth degree homogeneous polynomial.
JO - Publicacions Matemàtiques
PY - 1997
VL - 41
IS - 2
SP - 335
EP - 356
AB - In this work we study the integrability of two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fifth degree. We give a simple characterisation for the integrable cases in polar coordinates. Finally we formulate a conjecture about the independence of the two classes of parameters which appear on the system; if this conjecture is true the integrable cases found will be the only possible ones.
LA - eng
KW - Sistemas diferenciales; Polinomios; Sistemas bidimensionales; Invariantes; center; integrability; planar polynomial differential systems; Lyapunov constants
UR - http://eudml.org/doc/41322
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.