Relative Measurement and Its Generalization in Decision Making. Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors. The Analytic Hierarchy/Network Process.

Thomas L. Saaty

RACSAM (2008)

  • Volume: 102, Issue: 2, page 251-318
  • ISSN: 1578-7303

Abstract

top
According to the great mathematician Henri Lebesgue, making direct comparisons of objects with regard to a property is a fundamental mathematical process for deriving measurements. Measuring objects by using a known scale first then comparing the measurements works well for properties for which scales of measurement exist. The theme of this paper is that direct comparisons are necessary to establish measurements for intangible properties that have no scales of measurement. In that case the value derived for each element depends on what other elements it is compared with. We show how relative scales can be derived by making pairwise comparisons using numerical judgments from an absolute scale of numbers. Such measurements, when used to represent comparisons can be related and combined to define a cardinal scale of absolute numbers that is stronger than a ratio scale. They are necessary to use when intangible factors need to be added and multiplied among themselves and with tangible factors. To derive and synthesize relative scales systematically, the factors are arranged in a hierarchic or a network structure and measured according to the criteria represented within these structures. The process of making comparisons to derive scales of measurement is illustrated in two types of practical real life decisions, the Iran nuclear show-down with the West in this decade and building a Disney park in Hong Kong in 2005. It is then generalized to the case of making a continuum of comparisons by using Fredholm’s equation of the second kind whose solution gives rise to a functional equation. The Fourier transform of the solution of this equation in the complex domain is a sum of Dirac distributions demonstrating that proportionate response to stimuli is a process of firing and synthesis of firings as neurons in the brain do. The Fourier transform of the solution of the equation in the real domain leads to nearly inverse square responses to natural influences. Various generalizations and critiques of the approach are included.

How to cite

top

Saaty, Thomas L.. "Relative Measurement and Its Generalization in Decision Making. Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors. The Analytic Hierarchy/Network Process.." RACSAM 102.2 (2008): 251-318. <http://eudml.org/doc/42060>.

@article{Saaty2008,
abstract = {According to the great mathematician Henri Lebesgue, making direct comparisons of objects with regard to a property is a fundamental mathematical process for deriving measurements. Measuring objects by using a known scale first then comparing the measurements works well for properties for which scales of measurement exist. The theme of this paper is that direct comparisons are necessary to establish measurements for intangible properties that have no scales of measurement. In that case the value derived for each element depends on what other elements it is compared with. We show how relative scales can be derived by making pairwise comparisons using numerical judgments from an absolute scale of numbers. Such measurements, when used to represent comparisons can be related and combined to define a cardinal scale of absolute numbers that is stronger than a ratio scale. They are necessary to use when intangible factors need to be added and multiplied among themselves and with tangible factors. To derive and synthesize relative scales systematically, the factors are arranged in a hierarchic or a network structure and measured according to the criteria represented within these structures. The process of making comparisons to derive scales of measurement is illustrated in two types of practical real life decisions, the Iran nuclear show-down with the West in this decade and building a Disney park in Hong Kong in 2005. It is then generalized to the case of making a continuum of comparisons by using Fredholm’s equation of the second kind whose solution gives rise to a functional equation. The Fourier transform of the solution of this equation in the complex domain is a sum of Dirac distributions demonstrating that proportionate response to stimuli is a process of firing and synthesis of firings as neurons in the brain do. The Fourier transform of the solution of the equation in the real domain leads to nearly inverse square responses to natural influences. Various generalizations and critiques of the approach are included.},
author = {Saaty, Thomas L.},
journal = {RACSAM},
keywords = {conflict resolution; eigenvalue; functional equation; hierarchy; intangibles; judgment; network; neural firing; sensitivity; synthesis},
language = {eng},
number = {2},
pages = {251-318},
title = {Relative Measurement and Its Generalization in Decision Making. Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors. The Analytic Hierarchy/Network Process.},
url = {http://eudml.org/doc/42060},
volume = {102},
year = {2008},
}

TY - JOUR
AU - Saaty, Thomas L.
TI - Relative Measurement and Its Generalization in Decision Making. Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors. The Analytic Hierarchy/Network Process.
JO - RACSAM
PY - 2008
VL - 102
IS - 2
SP - 251
EP - 318
AB - According to the great mathematician Henri Lebesgue, making direct comparisons of objects with regard to a property is a fundamental mathematical process for deriving measurements. Measuring objects by using a known scale first then comparing the measurements works well for properties for which scales of measurement exist. The theme of this paper is that direct comparisons are necessary to establish measurements for intangible properties that have no scales of measurement. In that case the value derived for each element depends on what other elements it is compared with. We show how relative scales can be derived by making pairwise comparisons using numerical judgments from an absolute scale of numbers. Such measurements, when used to represent comparisons can be related and combined to define a cardinal scale of absolute numbers that is stronger than a ratio scale. They are necessary to use when intangible factors need to be added and multiplied among themselves and with tangible factors. To derive and synthesize relative scales systematically, the factors are arranged in a hierarchic or a network structure and measured according to the criteria represented within these structures. The process of making comparisons to derive scales of measurement is illustrated in two types of practical real life decisions, the Iran nuclear show-down with the West in this decade and building a Disney park in Hong Kong in 2005. It is then generalized to the case of making a continuum of comparisons by using Fredholm’s equation of the second kind whose solution gives rise to a functional equation. The Fourier transform of the solution of this equation in the complex domain is a sum of Dirac distributions demonstrating that proportionate response to stimuli is a process of firing and synthesis of firings as neurons in the brain do. The Fourier transform of the solution of the equation in the real domain leads to nearly inverse square responses to natural influences. Various generalizations and critiques of the approach are included.
LA - eng
KW - conflict resolution; eigenvalue; functional equation; hierarchy; intangibles; judgment; network; neural firing; sensitivity; synthesis
UR - http://eudml.org/doc/42060
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.