# All subvarieties of ${\mathcal{L}}_{pq}$ have finite bases of identities.

Sibirskij Matematicheskij Zhurnal (2003)

- Volume: 44, Issue: 3, page 636-649 (2003); translation in Sib. Math. J. 44
- ISSN: 0037-4474

## Access Full Article

top## How to cite

topNaritsyn, N. N.. "All subvarieties of have finite bases of identities.." Sibirskij Matematicheskij Zhurnal 44.3 (2003): 636-649 (2003); translation in Sib. Math. J. 44. <http://eudml.org/doc/50633>.

@article{Naritsyn2003,

author = {Naritsyn, N. N.},

journal = {Sibirskij Matematicheskij Zhurnal},

keywords = {varieties of groups; lattice ordered groups; finite bases of identities},

language = {eng},

number = {3},

pages = {636-649 (2003); translation in Sib. Math. J. 44},

publisher = {Sibirskoe Otdelenie Rossijskoj Akademii Nauk, Institut Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk; Izdatel'stvo Instituta Matematiki},

title = {All subvarieties of have finite bases of identities.},

url = {http://eudml.org/doc/50633},

volume = {44},

year = {2003},

}

TY - JOUR

AU - Naritsyn, N. N.

TI - All subvarieties of have finite bases of identities.

JO - Sibirskij Matematicheskij Zhurnal

PY - 2003

PB - Sibirskoe Otdelenie Rossijskoj Akademii Nauk, Institut Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk; Izdatel'stvo Instituta Matematiki

VL - 44

IS - 3

SP - 636

EP - 649 (2003); translation in Sib. Math. J. 44

LA - eng

KW - varieties of groups; lattice ordered groups; finite bases of identities

UR - http://eudml.org/doc/50633

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.