Résolution de l’équation A u + B u = f A est linéaire et B dérive d’un potentiel convexe

Jean-Michel Coron

Annales de la Faculté des sciences de Toulouse : Mathématiques (1979)

  • Volume: 1, Issue: 3, page 215-234
  • ISSN: 0240-2963

How to cite

top

Coron, Jean-Michel. "Résolution de l’équation $Au + Bu = f$ où $A$ est linéaire et $B$ dérive d’un potentiel convexe." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.3 (1979): 215-234. <http://eudml.org/doc/73092>.

@article{Coron1979,
author = {Coron, Jean-Michel},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {range of sums of nonlinear operators; max.-min.-principle; Laplace equation; nonlinear wave equation},
language = {fre},
number = {3},
pages = {215-234},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Résolution de l’équation $Au + Bu = f$ où $A$ est linéaire et $B$ dérive d’un potentiel convexe},
url = {http://eudml.org/doc/73092},
volume = {1},
year = {1979},
}

TY - JOUR
AU - Coron, Jean-Michel
TI - Résolution de l’équation $Au + Bu = f$ où $A$ est linéaire et $B$ dérive d’un potentiel convexe
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1979
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 3
SP - 215
EP - 234
LA - fre
KW - range of sums of nonlinear operators; max.-min.-principle; Laplace equation; nonlinear wave equation
UR - http://eudml.org/doc/73092
ER -

References

top
  1. [1 ] H. Amann. «Saddle points and multiple solutions of differential equations». à paraître. Zbl0414.47042MR639741
  2. [2] A. Bahri, H. Brezis. «Periodic solutions of a nonlinear wave equation». à paraître. Zbl0438.35044
  3. [3] A. Bahri et J.L. Morel. «Image de la somme de deux opérateurs». C.R. Acad. Sc.Paris287 (1978) p. 719-722. Zbl0393.47036MR515674
  4. [4] M.S. Berger et M. Schechter.«On the solvability of semilinear gradient operator equations». Advances in Math.25 (1977), pp. 97-132. Zbl0354.47025MR500336
  5. [5] H. Brezis et L. Nirenberg. «Characterizations of the ranges of some nonlinear operators and applications to boundary value problems». Annali Sc. Norm. Sup. di Pisa, serie IV, V, (1978) pp. 225-326. Zbl0386.47035MR513090
  6. [6] H. Brezis et L. Nirenberg. «Forced vibrations for a nonlinear wave equation». Comm. Pure Appl. Math.31 (1978) pp. 1-30. Zbl0378.35040MR470377
  7. [7] H. Brezis et L. Nirenberg. «Image d'une somme d'opérateurs non linéaires et applications»C.R. Acad. Sc.Paris, t. 284 (1977) pp. 1365-1368. Zbl0359.47035MR442771
  8. [8] A. Castro et A.C. Lazer. «Applications of a Max Min principle». Rev. Colombiana de Mat., 10 (1976) pp. 141-149. Zbl0356.35073MR501089
  9. [9] F.H. Clarke. «Periodic solutions to Hamiltonian inclusions». à paraître. Zbl0461.34030
  10. [10] F.H. Clarke et I. Ekeland. «Hamiltonian trajectories having prescribed minimal period». Comm. Pure Appl. Math. Zbl0403.70016MR562546
  11. [11] I. Ekeland. «Periodic solutions of Hamilton's equations and a theorem of P. Rabinowitz». J. Diff. Eq. Zbl0446.70019MR555325
  12. [12] A. Lazer, E. Landesman et D. Meyers. «On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence». J. Math. Anal. Appl.53 (1975) pp. 594-614. Zbl0354.35004MR420389
  13. [13] P.H. Rabinowitz. «A variational method for finding periodic solutions of differential equations». MRC Report 1854 (May 1978). Zbl0486.35009MR513821
  14. [14] P.H. Rabinowitz. «Free vibrations for a semi linear wave equation». Comm. Pure. Appl. Math., 31 (1978) pp. 31-68. Zbl0341.35051MR470378
  15. [15] P.H. Rabinowitz. «Periodic solutions of Hamiltonian systems». Comm. Pure. Appl. Math., 31 (1978) pp. 157-184. Zbl0358.70014MR467823

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.