Résolution de l’équation où est linéaire et dérive d’un potentiel convexe
Annales de la Faculté des sciences de Toulouse : Mathématiques (1979)
- Volume: 1, Issue: 3, page 215-234
- ISSN: 0240-2963
Access Full Article
topHow to cite
topCoron, Jean-Michel. "Résolution de l’équation $Au + Bu = f$ où $A$ est linéaire et $B$ dérive d’un potentiel convexe." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.3 (1979): 215-234. <http://eudml.org/doc/73092>.
@article{Coron1979,
author = {Coron, Jean-Michel},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {range of sums of nonlinear operators; max.-min.-principle; Laplace equation; nonlinear wave equation},
language = {fre},
number = {3},
pages = {215-234},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Résolution de l’équation $Au + Bu = f$ où $A$ est linéaire et $B$ dérive d’un potentiel convexe},
url = {http://eudml.org/doc/73092},
volume = {1},
year = {1979},
}
TY - JOUR
AU - Coron, Jean-Michel
TI - Résolution de l’équation $Au + Bu = f$ où $A$ est linéaire et $B$ dérive d’un potentiel convexe
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1979
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 3
SP - 215
EP - 234
LA - fre
KW - range of sums of nonlinear operators; max.-min.-principle; Laplace equation; nonlinear wave equation
UR - http://eudml.org/doc/73092
ER -
References
top- [1 ] H. Amann. «Saddle points and multiple solutions of differential equations». à paraître. Zbl0414.47042MR639741
- [2] A. Bahri, H. Brezis. «Periodic solutions of a nonlinear wave equation». à paraître. Zbl0438.35044
- [3] A. Bahri et J.L. Morel. «Image de la somme de deux opérateurs». C.R. Acad. Sc.Paris287 (1978) p. 719-722. Zbl0393.47036MR515674
- [4] M.S. Berger et M. Schechter.«On the solvability of semilinear gradient operator equations». Advances in Math.25 (1977), pp. 97-132. Zbl0354.47025MR500336
- [5] H. Brezis et L. Nirenberg. «Characterizations of the ranges of some nonlinear operators and applications to boundary value problems». Annali Sc. Norm. Sup. di Pisa, serie IV, V, (1978) pp. 225-326. Zbl0386.47035MR513090
- [6] H. Brezis et L. Nirenberg. «Forced vibrations for a nonlinear wave equation». Comm. Pure Appl. Math.31 (1978) pp. 1-30. Zbl0378.35040MR470377
- [7] H. Brezis et L. Nirenberg. «Image d'une somme d'opérateurs non linéaires et applications»C.R. Acad. Sc.Paris, t. 284 (1977) pp. 1365-1368. Zbl0359.47035MR442771
- [8] A. Castro et A.C. Lazer. «Applications of a Max Min principle». Rev. Colombiana de Mat., 10 (1976) pp. 141-149. Zbl0356.35073MR501089
- [9] F.H. Clarke. «Periodic solutions to Hamiltonian inclusions». à paraître. Zbl0461.34030
- [10] F.H. Clarke et I. Ekeland. «Hamiltonian trajectories having prescribed minimal period». Comm. Pure Appl. Math. Zbl0403.70016MR562546
- [11] I. Ekeland. «Periodic solutions of Hamilton's equations and a theorem of P. Rabinowitz». J. Diff. Eq. Zbl0446.70019MR555325
- [12] A. Lazer, E. Landesman et D. Meyers. «On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence». J. Math. Anal. Appl.53 (1975) pp. 594-614. Zbl0354.35004MR420389
- [13] P.H. Rabinowitz. «A variational method for finding periodic solutions of differential equations». MRC Report 1854 (May 1978). Zbl0486.35009MR513821
- [14] P.H. Rabinowitz. «Free vibrations for a semi linear wave equation». Comm. Pure. Appl. Math., 31 (1978) pp. 31-68. Zbl0341.35051MR470378
- [15] P.H. Rabinowitz. «Periodic solutions of Hamiltonian systems». Comm. Pure. Appl. Math., 31 (1978) pp. 157-184. Zbl0358.70014MR467823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.