Structure of the set of stationary solutions of viscous hydromagnetic equations with diffusivity

R. V. Saraykar; N. E. Joshi

Annales de la Faculté des sciences de Toulouse : Mathématiques (1981)

  • Volume: 3, Issue: 2, page 89-104
  • ISSN: 0240-2963

How to cite

top

Saraykar, R. V., and Joshi, N. E.. "Structure of the set of stationary solutions of viscous hydromagnetic equations with diffusivity." Annales de la Faculté des sciences de Toulouse : Mathématiques 3.2 (1981): 89-104. <http://eudml.org/doc/73121>.

@article{Saraykar1981,
author = {Saraykar, R. V., Joshi, N. E.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {stationary; Smale's infinite-dimensional version of Sard's theorem},
language = {eng},
number = {2},
pages = {89-104},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Structure of the set of stationary solutions of viscous hydromagnetic equations with diffusivity},
url = {http://eudml.org/doc/73121},
volume = {3},
year = {1981},
}

TY - JOUR
AU - Saraykar, R. V.
AU - Joshi, N. E.
TI - Structure of the set of stationary solutions of viscous hydromagnetic equations with diffusivity
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1981
PB - UNIVERSITE PAUL SABATIER
VL - 3
IS - 2
SP - 89
EP - 104
LA - eng
KW - stationary; Smale's infinite-dimensional version of Sard's theorem
UR - http://eudml.org/doc/73121
ER -

References

top
  1. [1] R. Abraham and J. Robbin. «Transversal mappings and flows». W.A. Benjamin, Amsterdam, New-York, 1967. Zbl0171.44404MR240836
  2. [2] G. Duvaut and J.L. Lions. «Inéquations en Thermoélasticité et Magnétohydrodynamique». Arch. Rat. Mech. Anal., Vol. 46, N° 4 (1972), 241-279. Zbl0264.73027MR346289
  3. [3] C. Foias and R. Temam. «A generic property of the set of stationary solutions of Navier Stokes equation, in Turbulence and Navier Stokes equations». Ed. R. Temam, Lecture Notes in Mathematics, 565, 1976, Springer. Zbl0379.76022MR447841
  4. [4] C. Foias and R. Temam. «Structure of the set of stationary solutions of the Navier-Stokes equations». Comm. Pure and Appl. Math. Vol. XXX, 149-164 (1977). Zbl0335.35077MR435626
  5. [5] C. Foias and R. Temam. «Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation». Annali Scoula Norm. Sup. di Pisa, Volume dedicated to J. Leray, Serie IV, 5 (1978), p. 29-63. Zbl0384.35047MR481645
  6. [6] O.A. Ladyzhenskaya. «The mathematical theory of viscous incompressible flow». Gordan and Breach, New-York, 1969. Zbl0184.52603MR254401
  7. [7] J.L. Lions and E. Magenes. «Nonhomogeneous boundary value problems and applications». Springer-Verlag, 1973. Zbl0251.35001MR350179
  8. [8] J.L. Lions. «Quelques méthodes de résolution des problèmes aux limites non linéaires». Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  9. [9] S. Smale. «An infinite dimensional version of Sard's theorem». Amer. J. Math.87, 1965, 861-866. Zbl0143.35301MR185604
  10. [10] C. Sulem. «Quelques résultats de régularité pour les équations de la magnétohydrodynamique». C.R. Acad. Sc.Paris, t. 285, Série A, 365-368 (1977). Zbl0355.35073MR442517
  11. [11] R. Temam. «Navier-Stokes equations, Theory and Numerical Analysis». North Holland, Amsterdam, 1977. Zbl0383.35057MR603444

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.