Formule de Trotter pour l’opérateur - Δ + q + - q - + i q '

Antonio de Bivar-Weinholtz; Rémi Piraux

Annales de la Faculté des sciences de Toulouse : Mathématiques (1983)

  • Volume: 5, Issue: 1, page 15-37
  • ISSN: 0240-2963

How to cite

top

Bivar-Weinholtz, Antonio de, and Piraux, Rémi. "Formule de Trotter pour l’opérateur $- \Delta + q^+ - q^- + iq \,^{\prime }$." Annales de la Faculté des sciences de Toulouse : Mathématiques 5.1 (1983): 15-37. <http://eudml.org/doc/73140>.

@article{Bivar1983,
author = {Bivar-Weinholtz, Antonio de, Piraux, Rémi},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Semigroup; Trotter Product Formula; Schrödinger Operator},
language = {fre},
number = {1},
pages = {15-37},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Formule de Trotter pour l’opérateur $- \Delta + q^+ - q^- + iq \,^\{\prime \}$},
url = {http://eudml.org/doc/73140},
volume = {5},
year = {1983},
}

TY - JOUR
AU - Bivar-Weinholtz, Antonio de
AU - Piraux, Rémi
TI - Formule de Trotter pour l’opérateur $- \Delta + q^+ - q^- + iq \,^{\prime }$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1983
PB - UNIVERSITE PAUL SABATIER
VL - 5
IS - 1
SP - 15
EP - 37
LA - fre
KW - Semigroup; Trotter Product Formula; Schrödinger Operator
UR - http://eudml.org/doc/73140
ER -

References

top
  1. [1] A. Bivar-Weinholtz, R. Piraux. «Formule de Trotter pour l'opérateur de Schrödinger avec un potentiel singulier complexe». C.R. Acad. Sc.Paris, 288, Série A, 1979, p. 539-542. Zbl0404.35029MR532567
  2. [2] H. Brezis, F. Browder. «Sur une propriété des espaces de Sobolev». C.R. Acad. Sc.Paris, 287, Série A, 1978, p. 113-115. Zbl0381.46019MR511925
  3. [3] H. Brezis, T. Kato. «Remarks on the Schrödinger operator with singular complex potentials». J. Math. Pures et Appl.58, 1979, p. 137-151. Zbl0408.35025MR539217
  4. [4] P.R. Chernoff. «Product formulas, non linear semigroups, and addition of unbounded operators». Mem. An. Math. Society, n° 140 (1974). Zbl0283.47041MR417851
  5. [5] T. Kato. «Perturbation Theory for linear operators». Springer-Verlag (2nd edition - 1976). Zbl0148.12601MR407617
  6. [6] T. Kato. «On some Schrôdinger operators with a singular complex potential». Ann. Sc. Norm. Sup. Pisa, Ser. IV, 5 (1978), p. 105-114. Zbl0376.47021MR492961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.