Étude semi-classique d'observables quantiques

Xue Ping Wang

Annales de la Faculté des sciences de Toulouse : Mathématiques (1985)

  • Volume: 7, Issue: 2, page 101-135
  • ISSN: 0240-2963

How to cite

top

Wang, Xue Ping. "Étude semi-classique d'observables quantiques." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.2 (1985): 101-135. <http://eudml.org/doc/73172>.

@article{Wang1985,
author = {Wang, Xue Ping},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Schrödinger equation; Hamiltonian system; weighted Sobolev spaces; -pseudo-differential operator},
language = {fre},
number = {2},
pages = {101-135},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Étude semi-classique d'observables quantiques},
url = {http://eudml.org/doc/73172},
volume = {7},
year = {1985},
}

TY - JOUR
AU - Wang, Xue Ping
TI - Étude semi-classique d'observables quantiques
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1985
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 2
SP - 101
EP - 135
LA - fre
KW - Schrödinger equation; Hamiltonian system; weighted Sobolev spaces; -pseudo-differential operator
UR - http://eudml.org/doc/73172
ER -

References

top
  1. [1 ] R. Beals. «A general calculus of pseudo-differential operators». Duke Math. J., 42 (1975), 1-42. Zbl0343.35078MR367730
  2. [2] A.P. Calderon et R. Vaillancourt. «A class of bounded pseudo-differential operators». Proc. Nat. Acad. Sci. USA, 69 (1972), 1185-1187. Zbl0244.35074MR298480
  3. [3] J. Chazarain. «Spectre d'un Hamiltonien quantique et mécanique classique». Comm. P.D.E., 5 (6) (1980) 595-644. Zbl0437.70014MR578047
  4. [4] Yu.V. Egorov . «On canonical transformation of pseudo-differential operators». Uspehi Mat. Nauk., 25 (1969) 235-236. Zbl0191.43802MR265748
  5. [5] D. Fujiwara. «A construction of the fundamental solution for the Schrödinger equations». J. Anal. Math., 35 (1979) 41-96. Zbl0418.35032MR555300
  6. [6] G.A. Hagedorn. «Semi-classical quantum mechnics, I the h → 0 limit for coherent states». Comm. Math. Phys., 71 (1980) 77-93. 
  7. [7] B. Helffer et D. Robert. «Calcul fonctionnel par la transformation de Melin et opérateurs admissibles». J. Funct. Anal., 53 (3) (1983) 246-268. Zbl0524.35103MR724029
  8. [8] K. Hepp. «The classical limit for quantum mechanical correlation functions». Comm. Math. Phys., 35 (1974) 265-277. MR332046
  9. [9] H. Hogreve, J. Potthoff et R. Schrader. «Classical limits for quantum particles in Yang-Mills potentials». Comm. Math. Phys., 91 (4) (1983) 573-598. Zbl0547.58044MR727204
  10. [10] L. Hormander. «The Weyl calculus of pseudo-differential operators». Comm. Pure. Appl. Math., 32 (1979) 359-443. Zbl0388.47032MR517939
  11. [11] H. Kitada. «A calculus of Fourier integral operators and the global fundamental solution for a Schrödinger equation». Osaka J. Math., 19 (1982) 863-900. Zbl0508.35079MR687775
  12. [12] H. Kitada et H. Kumano-Go. «A family of Fourier integral operators and the fundamental solution for a Schrödinger equation». Osaka J. Math., 18 (1981) 291-360. Zbl0472.35034MR628838
  13. [13] V.P. Maslov et M.V. Fedoriuk. «Semi-classical approximation in quantum mechanics». D. Reidel, Dordrecht, (1981). Zbl0458.58001
  14. [14] D. Robert. «Calcul fonctionnel sur les opérateurs admissibles et applications». J. Funct. Anal., 45 (1) (1983) 74-94. Zbl0482.35069MR645646
  15. [15] D. Robert. «Approximation semi-classique». Cours de 3ème cycle, Nantes1982-1983, à paraitre. 
  16. [16] D. Robert et H. Tamura. «Semi-classical bounds for resolvents of Schrödinger operators ans asymptotics for scattering phase». Comm. in P.D.E., 9(10) (1984), 1017-1058. Zbl0561.35021MR755930
  17. [17] R. Schrader et M. Taylor. «Small asymptotics for quantum partition functions associated to particles in external Yang-Mills potentials». Comm. Math. Phys., 92, (1984), 555-594. Zbl0534.58028MR736411
  18. [18] B. Simon. «The classical limit of quantum partition functions». Comm. Math. Phys., 71, (1980), 247-276. Zbl0436.22012MR565281
  19. [19] W. Thirring. «A course in mathematical physics». Vol. 3, Berlin, Springer, (1979). Zbl0435.53026MR553112
  20. [20] A. Voros. «Developpement semi-classique». Thèse, Orsay, (1977). 
  21. [21] X.P. Wang. «Etude semi-classique d'observables quantiques». Journée «Equations aux Dérivées Partielles» de Nantes-Rennes, Avril 1984. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.