Étude semi-classique d'observables quantiques
Annales de la Faculté des sciences de Toulouse : Mathématiques (1985)
- Volume: 7, Issue: 2, page 101-135
- ISSN: 0240-2963
Access Full Article
topHow to cite
topWang, Xue Ping. "Étude semi-classique d'observables quantiques." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.2 (1985): 101-135. <http://eudml.org/doc/73172>.
@article{Wang1985,
author = {Wang, Xue Ping},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Schrödinger equation; Hamiltonian system; weighted Sobolev spaces; -pseudo-differential operator},
language = {fre},
number = {2},
pages = {101-135},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Étude semi-classique d'observables quantiques},
url = {http://eudml.org/doc/73172},
volume = {7},
year = {1985},
}
TY - JOUR
AU - Wang, Xue Ping
TI - Étude semi-classique d'observables quantiques
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1985
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 2
SP - 101
EP - 135
LA - fre
KW - Schrödinger equation; Hamiltonian system; weighted Sobolev spaces; -pseudo-differential operator
UR - http://eudml.org/doc/73172
ER -
References
top- [1 ] R. Beals. «A general calculus of pseudo-differential operators». Duke Math. J., 42 (1975), 1-42. Zbl0343.35078MR367730
- [2] A.P. Calderon et R. Vaillancourt. «A class of bounded pseudo-differential operators». Proc. Nat. Acad. Sci. USA, 69 (1972), 1185-1187. Zbl0244.35074MR298480
- [3] J. Chazarain. «Spectre d'un Hamiltonien quantique et mécanique classique». Comm. P.D.E., 5 (6) (1980) 595-644. Zbl0437.70014MR578047
- [4] Yu.V. Egorov . «On canonical transformation of pseudo-differential operators». Uspehi Mat. Nauk., 25 (1969) 235-236. Zbl0191.43802MR265748
- [5] D. Fujiwara. «A construction of the fundamental solution for the Schrödinger equations». J. Anal. Math., 35 (1979) 41-96. Zbl0418.35032MR555300
- [6] G.A. Hagedorn. «Semi-classical quantum mechnics, I the h → 0 limit for coherent states». Comm. Math. Phys., 71 (1980) 77-93.
- [7] B. Helffer et D. Robert. «Calcul fonctionnel par la transformation de Melin et opérateurs admissibles». J. Funct. Anal., 53 (3) (1983) 246-268. Zbl0524.35103MR724029
- [8] K. Hepp. «The classical limit for quantum mechanical correlation functions». Comm. Math. Phys., 35 (1974) 265-277. MR332046
- [9] H. Hogreve, J. Potthoff et R. Schrader. «Classical limits for quantum particles in Yang-Mills potentials». Comm. Math. Phys., 91 (4) (1983) 573-598. Zbl0547.58044MR727204
- [10] L. Hormander. «The Weyl calculus of pseudo-differential operators». Comm. Pure. Appl. Math., 32 (1979) 359-443. Zbl0388.47032MR517939
- [11] H. Kitada. «A calculus of Fourier integral operators and the global fundamental solution for a Schrödinger equation». Osaka J. Math., 19 (1982) 863-900. Zbl0508.35079MR687775
- [12] H. Kitada et H. Kumano-Go. «A family of Fourier integral operators and the fundamental solution for a Schrödinger equation». Osaka J. Math., 18 (1981) 291-360. Zbl0472.35034MR628838
- [13] V.P. Maslov et M.V. Fedoriuk. «Semi-classical approximation in quantum mechanics». D. Reidel, Dordrecht, (1981). Zbl0458.58001
- [14] D. Robert. «Calcul fonctionnel sur les opérateurs admissibles et applications». J. Funct. Anal., 45 (1) (1983) 74-94. Zbl0482.35069MR645646
- [15] D. Robert. «Approximation semi-classique». Cours de 3ème cycle, Nantes1982-1983, à paraitre.
- [16] D. Robert et H. Tamura. «Semi-classical bounds for resolvents of Schrödinger operators ans asymptotics for scattering phase». Comm. in P.D.E., 9(10) (1984), 1017-1058. Zbl0561.35021MR755930
- [17] R. Schrader et M. Taylor. «Small asymptotics for quantum partition functions associated to particles in external Yang-Mills potentials». Comm. Math. Phys., 92, (1984), 555-594. Zbl0534.58028MR736411
- [18] B. Simon. «The classical limit of quantum partition functions». Comm. Math. Phys., 71, (1980), 247-276. Zbl0436.22012MR565281
- [19] W. Thirring. «A course in mathematical physics». Vol. 3, Berlin, Springer, (1979). Zbl0435.53026MR553112
- [20] A. Voros. «Developpement semi-classique». Thèse, Orsay, (1977).
- [21] X.P. Wang. «Etude semi-classique d'observables quantiques». Journée «Equations aux Dérivées Partielles» de Nantes-Rennes, Avril 1984.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.