Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods
Annales de la Faculté des sciences de Toulouse : Mathématiques (1986-1987)
- Volume: 8, Issue: 2, page 225-252
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBrillard, Alain. "Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.2 (1986-1987): 225-252. <http://eudml.org/doc/73199>.
@article{Brillard1986-1987,
author = {Brillard, Alain},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {asymptotic behaviour; Brinkman's law; epi-convergence methods},
language = {eng},
number = {2},
pages = {225-252},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods},
url = {http://eudml.org/doc/73199},
volume = {8},
year = {1986-1987},
}
TY - JOUR
AU - Brillard, Alain
TI - Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 2
SP - 225
EP - 252
LA - eng
KW - asymptotic behaviour; Brinkman's law; epi-convergence methods
UR - http://eudml.org/doc/73199
ER -
References
top- [1] Adams ( R.A.).- Sobolev Spaces. — Academic Press, 1975. Zbl0314.46030MR450957
- [2] Attouch ( H.).- Variational convergence for functions and operators. Applicable Mathematics series. - Pitman (London), 1984. Zbl0561.49012MR773850
- [3] Attouch ( H.), and Picard ( C.). — Variational inequalities with varying obstacles; the general form of the limit problem, J.Functional Analysis, t. 50 (3), 1983, p. 329-386. MR695419
- [4] Brillard ( A.). — Ecoulement d'un fluide incompressible dans un milieu poreux. — Publication Avamac (Perpignan), 1985.
- [5] Cioranescu ( D.), and Murat ( F.).- Un terme étrange venu d'ailleurs, Collège de France Seminar.Research Notes in Maths, t. 60, 70Pitman (London), 1982. Zbl0496.35030MR652509
- [6] De Giorgi ( E.).- Convergence problems for functionals and operators. Proc. Int. Congress on "Recent Methods in Nonlinear Analysis" Rome 1978 De Giorgi, Magenes, Mosco Eds. Pitagora Editrice (Bologna) 1979. Zbl0405.49001MR533166
- [7] Ladyzhenskaya ( O.A.). — The mathematical theory of viscous incompressible flow.— Gordon and Breach (New York), 1963. Zbl0121.42701MR155093
- [8] Levy ( T.). — Loi de Darcy ou loi de Brinkman?, C.R.A.S. série II, t. 292, 1981, p. 871-874. Zbl0485.76074MR623954
- [9] Levy ( T.). — Fluid flow through an array of fixed particles, Int. J. Engin. Sci., t. 21 n°1, 1983, p. 11-23. Zbl0539.76092MR691100
- [10] Marchenko, Hrouslov .— Problèmes aux limites dans des domaines aux frontières finement granulées. - in russian. Naukova Dumka (Kiev), 1974.
- [11] Murat ( F.).-Oral communication—1985.
- [12] Sanchez-Palencia ( E.).— Non-homogeneous media and vibration theory.— Lectures Notes in Physics n°127. Springer-Verlag (Berlin), 1980. Zbl0432.70002MR578345
- [13] Tartar ( L.).- Incompressible fluid flow in a porous medium. Convergence of the homogenization process. - Appendix in the preceding reference [12].
- [14] Temam ( R.). - Navier-Stokes equations.— North Holland (Amsterdam), 1977. Brinkman's law may be found in the original paper. Zbl0383.35057
- Brinkman ( H.C.).-A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appli. Sci. Res., t. A1, 1947, p. 27-34. Zbl0041.54204
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.