Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods

Alain Brillard

Annales de la Faculté des sciences de Toulouse : Mathématiques (1986-1987)

  • Volume: 8, Issue: 2, page 225-252
  • ISSN: 0240-2963

How to cite

top

Brillard, Alain. "Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.2 (1986-1987): 225-252. <http://eudml.org/doc/73199>.

@article{Brillard1986-1987,
author = {Brillard, Alain},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {asymptotic behaviour; Brinkman's law; epi-convergence methods},
language = {eng},
number = {2},
pages = {225-252},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods},
url = {http://eudml.org/doc/73199},
volume = {8},
year = {1986-1987},
}

TY - JOUR
AU - Brillard, Alain
TI - Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 2
SP - 225
EP - 252
LA - eng
KW - asymptotic behaviour; Brinkman's law; epi-convergence methods
UR - http://eudml.org/doc/73199
ER -

References

top
  1. [1] Adams ( R.A.).- Sobolev Spaces. — Academic Press, 1975. Zbl0314.46030MR450957
  2. [2] Attouch ( H.).- Variational convergence for functions and operators. Applicable Mathematics series. - Pitman (London), 1984. Zbl0561.49012MR773850
  3. [3] Attouch ( H.), and Picard ( C.). — Variational inequalities with varying obstacles; the general form of the limit problem, J.Functional Analysis, t. 50 (3), 1983, p. 329-386. MR695419
  4. [4] Brillard ( A.). — Ecoulement d'un fluide incompressible dans un milieu poreux. — Publication Avamac (Perpignan), 1985. 
  5. [5] Cioranescu ( D.), and Murat ( F.).- Un terme étrange venu d'ailleurs, Collège de France Seminar.Research Notes in Maths, t. 60, 70Pitman (London), 1982. Zbl0496.35030MR652509
  6. [6] De Giorgi ( E.).- Convergence problems for functionals and operators. Proc. Int. Congress on "Recent Methods in Nonlinear Analysis" Rome 1978 De Giorgi, Magenes, Mosco Eds. Pitagora Editrice (Bologna) 1979. Zbl0405.49001MR533166
  7. [7] Ladyzhenskaya ( O.A.). — The mathematical theory of viscous incompressible flow.— Gordon and Breach (New York), 1963. Zbl0121.42701MR155093
  8. [8] Levy ( T.). — Loi de Darcy ou loi de Brinkman?, C.R.A.S. série II, t. 292, 1981, p. 871-874. Zbl0485.76074MR623954
  9. [9] Levy ( T.). — Fluid flow through an array of fixed particles, Int. J. Engin. Sci., t. 21 n°1, 1983, p. 11-23. Zbl0539.76092MR691100
  10. [10] Marchenko, Hrouslov .— Problèmes aux limites dans des domaines aux frontières finement granulées. - in russian. Naukova Dumka (Kiev), 1974. 
  11. [11] Murat ( F.).-Oral communication—1985. 
  12. [12] Sanchez-Palencia ( E.).— Non-homogeneous media and vibration theory.— Lectures Notes in Physics n°127. Springer-Verlag (Berlin), 1980. Zbl0432.70002MR578345
  13. [13] Tartar ( L.).- Incompressible fluid flow in a porous medium. Convergence of the homogenization process. - Appendix in the preceding reference [12]. 
  14. [14] Temam ( R.). - Navier-Stokes equations.— North Holland (Amsterdam), 1977. Brinkman's law may be found in the original paper. Zbl0383.35057
  15. Brinkman ( H.C.).-A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appli. Sci. Res., t. A1, 1947, p. 27-34. Zbl0041.54204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.