Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure
Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)
- Volume: 10, Issue: 1, page 37-64
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBrillard, Alain. "Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.1 (1989): 37-64. <http://eudml.org/doc/73224>.
@article{Brillard1989,
author = {Brillard, Alain},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {asymptotic behaviour; viscous Bingham fluid; media with periodic structure; minimization problem; epi-convergence methods; Darcy limit laws},
language = {eng},
number = {1},
pages = {37-64},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure},
url = {http://eudml.org/doc/73224},
volume = {10},
year = {1989},
}
TY - JOUR
AU - Brillard, Alain
TI - Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 1
SP - 37
EP - 64
LA - eng
KW - asymptotic behaviour; viscous Bingham fluid; media with periodic structure; minimization problem; epi-convergence methods; Darcy limit laws
UR - http://eudml.org/doc/73224
ER -
References
top- [1] Attouch ( H.). — Variational convergence for functions and operators. Applicable Maths Series. Pitman (London) 1984. Zbl0561.49012MR773850
- [2] Bensoussan ( A.), Lions ( J.L.), Papanicolaou ( G.).- Asymptotic analysis for periodic structures. North Holland (Amsterdam) 1978. Zbl0404.35001MR503330
- [3] Brezis ( H.). - Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland (Amsterdam) 1973. Zbl0252.47055MR348562
- [4] Brillard ( A.).- Asymptotic behaviour of the solution of Mossolov and Miasnikov's problem in an open set with holes. Publications Univ. Haute Alsace n°421986.
- [5] Brillard ( A.). - Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods. Ann. Fac. Sci. Toulouse t. 8 Fasc. 2 p. 225-2521987 and Publication Avamac Perpignan n°85-111985. Zbl0628.76093MR928845
- [6] De Giorgi ( E.). — Convergence problems for functionals and operators. Proc. Int. Meeting on Recent methods in nonlinear analysis. Rome 1978. De Giorgi, Magenes, Mosco, Eds. Pitagora Ed. (Bologna) 1979. Zbl0405.49001MR533166
- [7] Duvaut ( G.), Lions ( J.L.).—Les inéquations en mécanique et physique, Dunod (Paris) 1972. Zbl0298.73001MR464857
- [8] Ekeland ( I.), Temam ( R.).-Analyse convexe et problèmes variationnels. Dunod (Paris) 1978. Zbl0281.49001
- [9] Levy ( T.).—Loi de Darcy ou loi de Brinkman?CRAS Série II t. 2921981 p. 871-874. Zbl0485.76074MR623954
- [10] Lions ( J.L.), Sanchez-Palencia ( E.). - Ecoulement d'un fluide viscoplastique de Bingham dans un milieu poreux. J. Maths. pures et appli.601981 p. 341-360. Zbl0484.76009MR633009
- [11] Marchenko ( A.V.), Hruslov ( E.Y.). — Boundary value problems in domains with close-grained boundaries. Naukova Dumka (Kiev) 1974 (in russian). MR601059
- [12] Sanchez-Palencia ( E.). — Non-homogeneous media and vibration theory. Lecture Notes in Physics n°127. Springer Verlag (Berlin) 1980. Zbl0432.70002MR578345
- [13] Tartar ( L.).-Incompressible fluid flow in a porous medium. Convergence of the homogenization process. Appendix in [12].
- [14] Temam ( R.). — Navier-Stokes equations. North Holland (Amsterdam) 1977. see also Deny-LionsLes espaces de type Beppo-Levy. Ann. Inst. Fourier. t. 5, 1954, p. 305-370, Necas J.Equations aux dérivées partielles. Presses de l'Université de Montreal. 1965.
- [15] Temam ( R.). — Problèmes mathématiques en plasticité. Gauthier-Villars (Paris) 1983. Zbl0547.73026MR711964
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.