Quelques applications de la positivité en théorie du transport

Mustapha Mokhtar-Kharroubi

Annales de la Faculté des sciences de Toulouse : Mathématiques (1990)

  • Volume: 11, Issue: 1, page 75-99
  • ISSN: 0240-2963

How to cite

top

Mokhtar-Kharroubi, Mustapha. "Quelques applications de la positivité en théorie du transport." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.1 (1990): 75-99. <http://eudml.org/doc/73253>.

@article{Mokhtar1990,
author = {Mokhtar-Kharroubi, Mustapha},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {spectral theory; linear transport operator; comparison theorem; positive operators; fundamental eigenvalue; B.G.K. linear transport equation; kinetic theory of gases},
language = {fre},
number = {1},
pages = {75-99},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Quelques applications de la positivité en théorie du transport},
url = {http://eudml.org/doc/73253},
volume = {11},
year = {1990},
}

TY - JOUR
AU - Mokhtar-Kharroubi, Mustapha
TI - Quelques applications de la positivité en théorie du transport
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1990
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 1
SP - 75
EP - 99
LA - fre
KW - spectral theory; linear transport operator; comparison theorem; positive operators; fundamental eigenvalue; B.G.K. linear transport equation; kinetic theory of gases
UR - http://eudml.org/doc/73253
ER -

References

top
  1. [1] Marek ( I.) .— Frobenius theory ofpositive operators : Comparison theorems and applications, Siam J. Appl. Math. Vol. 19, n°3 (1970) Zbl0219.47022MR415405
  2. [2] Beals ( R.) .— An abstract treatment of some Forward-Backward problems of Transport and Scattering, J. Funct. Anal.34 (1979) pp. 1-20 Zbl0425.34067MR551106
  3. [3] Kaper ( H.G.) .— Boundary value problems of mixed type arising in the kinetic theory of gases, Siam J. Math. Anal. Vol. 10, n°1 (1979) pp. 161-179 Zbl0414.45005MR516760
  4. [4] Lions ( J.L.) .— A linear problem arising in kinetic theory of gases, dans Proc. Internat. Sympos. Inst. Mat. Univ. Federal Rio de Janeiro (1977) pp. 284-346, North-Holland Math. Studies30Amsterdam (1978) 
  5. [5] Birkhoff ( G.) .- Positivity and criticality. In the Proceedings of Symposia in Applied Mathematics. Nuclear reactor theory, Am. Math. Soc. (1961) MR120814
  6. [6] Greiner ( G.), Voigt ( J.) and Wolff ( M.) .— On the spectral bound of the generator of semigroups of positive operators, J. Op. Theory5 (1981) pp. 245-256 Zbl0469.47032MR617977
  7. [7] Voigt ( J.) .— Positivity in time dependent linear transport theory, Acta Applicandæ Mathematicæ2 (1984) pp. 311-331 Zbl0579.47040MR753698
  8. [8] Dautray ( R.) et Lions ( J.L.) .— Analyse mathématique et calcul numérique, Tome 3Masson, Paris (1985) Zbl0642.35001MR902802
  9. [9] Mokhtar-Kharroubi ( M.) .— The time asymptotic behaviour and the compactness in neutron transport theory, Publication du Laboratoire d'Analyse Numérique. Paris. R. 86020 (1986) MR867550
  10. [10] Kaper ( H.G.), Lekkerkerker ( C.G.) and Hejtmanek ( J.) .— Spectral methods in linear transport theory, Birkhäuser Verlag, Basel (1982) Zbl0498.47001MR685594
  11. [11] Mokhtar-Kharroubi ( M.) .— Some spectral properties of the neutron transport operator in bounded geometries, Transport theory and statistical Physics16(7) (1987) pp. 935-958 Zbl0631.47001MR913932
  12. [12] Mokhtar-Kharroubi ( M.) Thèse de 3ièmecycle, Univ. Paris 6 (1983) 
  13. [13] Mokhtar-Kharroubi ( M.) .— Spectral theory of the neutron transport operator in bounded geometries, Transport theory and statistical Phisics16(4-6) (1987) pp. 467-502 Zbl0629.45011MR906915
  14. [14] Mokhtar-Kharroubi ( M.) .— Spectral theory of the multigroup neutron transport operator, Eur. J. Mech. B/Fluids9, n° 2 (1990) pp. 197-222 Zbl0722.47060MR1096158
  15. [15] J. Voigt .— Spectral properties of the neutron transport equation, J. Math. Anal. Appl. Vol. 106, n°1 (1985) Zbl0567.45002MR780325
  16. [16] Aliprantis ( C.D.) and Burkinshaw ( O.) .— Positive compact operators on Banach lattices, Math. Z174 (1980) pp. 289-298 Zbl0425.46015MR593826
  17. [17] Vidav ( I.) .— Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator, J. Math. Anal. Appl.22 (1968) pp. 144-155 Zbl0155.19203MR230531
  18. [18] Angelescu ( N.) and Protopopescu ( V.) .— On a problem in linear transport theory, Rev. Roumaine Phys.22 (1977) pp. 1055-1061 MR479215
  19. [19] Victory ( H.D.) .— Jr. On linear integral operators with nonnegative kernels, J. Math. Anal. Appl. Vol 89, n°2 (1982) pp. 420-441 Zbl0496.47028MR677739
  20. [20] Nagel ( R.) et al .— One parameter semigroups of positive operators, Lecture Notes in Mathematics1184, Springer Verlag (1986) Zbl0585.47030MR839450

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.