Holes and obstacles

Giovanni Mancini; Roberta Musina

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 4, page 323-345
  • ISSN: 0294-1449

How to cite

top

Mancini, Giovanni, and Musina, Roberta. "Holes and obstacles." Annales de l'I.H.P. Analyse non linéaire 5.4 (1988): 323-345. <http://eudml.org/doc/78156>.

@article{Mancini1988,
author = {Mancini, Giovanni, Musina, Roberta},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {obstacle problem; limiting Sobolev exponent; Dirichlet problem; exist; continuity},
language = {eng},
number = {4},
pages = {323-345},
publisher = {Gauthier-Villars},
title = {Holes and obstacles},
url = {http://eudml.org/doc/78156},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Mancini, Giovanni
AU - Musina, Roberta
TI - Holes and obstacles
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 4
SP - 323
EP - 345
LA - eng
KW - obstacle problem; limiting Sobolev exponent; Dirichlet problem; exist; continuity
UR - http://eudml.org/doc/78156
ER -

References

top
  1. [1] A. Bahri and J.M. Coron, Une théorie des points critiques à l'infini pour l'équation de Yamabe et le problème de Kazdan-Warner, C.R. Acad. Sci. Paris, T. 300, Series I, 1985, pp. 513-516. Zbl0585.58005MR792378
  2. [2] A. Bahri and J.M. Coron, Équation de Yamabe sur un ouvert non contractible, Proceedings of the Conference "Variational Methods in Differential Problems", Trieste, 1985, in Re . Istituto di Matematica, Univ. Trieste, Vol. 18, 1986, pp. 1-15. Zbl0629.35041MR898390
  3. [3] H. Brezis, Elli tic Equations with Limiting Sobolev Exponents — the Impact of Topology, Proc. ympos. 50th Ann. Courant Institute; Comm. Pure Appl. Math., Vol. 39, 1986. Zbl0601.35043MR861481
  4. [4] H. Brezis and J.M. Coron, Convergence of Solutions of H-Systems, or How to Blow up Bubbles, Arch. Rational Mech. Anal., Vol. 88, 1985, pp. 21-56. Zbl0584.49024MR784102
  5. [5] H. Brezis and E.H. Lieb, A Relation Between Pointwise Convergence of Functions and Convergence of Integrals, Proc. Amer. Math. Soc., Vol. 88, 1983, pp. 486-490. Zbl0526.46037MR699419
  6. [6] H. Brezis and T. Kato, Remarks on the Scrödinger Operator with Singular Complex Potentials, J. Math. Pures et Appl., T. 58, pp. 137-151. Zbl0408.35025MR539217
  7. [7] H. Brezis and L. Nirenberg, Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents, Comm. Pure Appl. Math., Vol. 36, 1983, pp. 437-477. Zbl0541.35029MR709644
  8. [8] J.M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sci. Paris, T. 299, Series I, 1984, pp. 209-212. Zbl0569.35032MR762722
  9. [9] J. Kazdan and F. Warner, Remarks on Some Quasilinear Elliptic Equations, Comm. Pure Appl. Math., Vol. 28, 1975, pp. 567-597. Zbl0325.35038MR477445
  10. [10] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their App lications, Academic-Press, New York, 1980. Zbl0457.35001MR567696
  11. [11] H. Lewy and G. Stampacchia, On the Regularity of the Solutions of a Variational Inequality, Comm. Pure Appl. Math., Vol. 22, 1969, pp. 153-188. Zbl0167.11501MR247551
  12. [12] P.L. Lions, T e Concentration-Compactness Principle in the Calculus of Variations: the Limit Case, Rev. Mat. Iberoamericana, Vol. 1, 1985, pp. 145-201 and Vol. 2, 1985, pp. 45-121. Zbl0704.49005MR850686
  13. [13] M. Struwe, A Global Compactness Result for Elliptic Boundary Value Problems Involving Limiting Nonlinearities, Math. Z., Vol. 187, 1984, pp. 511-517. Zbl0535.35025MR760051
  14. [14] A. Szulkin, Minimax Principles for Lower Semicontinuous Functions and Applications to Nonlinear Boundary Value Problems, Ann. Inst. H. Poincaré, Anal. Non Linéaire, Vol. 3, 1986, pp. 77-109. Zbl0612.58011MR837231

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.