Une résolution en singularités toriques simpliciales des singularités-quotient de dimension trois

Nicolas Pouyanne

Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)

  • Volume: 1, Issue: 3, page 363-398
  • ISSN: 0240-2963

How to cite

top

Pouyanne, Nicolas. "Une résolution en singularités toriques simpliciales des singularités-quotient de dimension trois." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.3 (1992): 363-398. <http://eudml.org/doc/73308>.

@article{Pouyanne1992,
author = {Pouyanne, Nicolas},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {singularities of quotient; simplicial toric variety; canonical singularities},
language = {fre},
number = {3},
pages = {363-398},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Une résolution en singularités toriques simpliciales des singularités-quotient de dimension trois},
url = {http://eudml.org/doc/73308},
volume = {1},
year = {1992},
}

TY - JOUR
AU - Pouyanne, Nicolas
TI - Une résolution en singularités toriques simpliciales des singularités-quotient de dimension trois
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 3
SP - 363
EP - 398
LA - fre
KW - singularities of quotient; simplicial toric variety; canonical singularities
UR - http://eudml.org/doc/73308
ER -

References

top
  1. [B] Brieskorn ( E.) .- Rationale Singularitäten komplexer Fläschen, Invent. Math.4 (1968), pp. 336-358. Zbl0219.14003MR222084
  2. [Bk] Bourbaki ( N.) .- Algèbre commutative (chapitres 5 à 7), Ed. Masson, Paris (1985). Zbl0547.13002
  3. [Ch] Chevalley ( C.) .— Invariants of finite groups generated by reflections, Am. J. Math77 (1955), pp. 778-782. Zbl0065.26103MR72877
  4. [D] Danilov ( V.I.) .— The geometry of toric varieties, Russian Math. Surveys33II (1978), pp. 97-154. Zbl0425.14013MR495499
  5. [II] Ishida ( M.N.) et Iwashita ( N.) .— Canonical cyclic quotient singularities of dimension 3, Advanced Studies in Pure Math.8 (1986), Complex analytic singularities, pp. 135-151. Zbl0627.14002MR894290
  6. [KKMS] Kempf ( G.), Knudsen ( F.), Mumford ( D.) et Saint-Donat ( B.) . - Toroidal embeddings I, Lecture Notes in Math.Springer339 (1973). Zbl0271.14017MR335518
  7. [KM] Kac ( V.) et Watanabe ( K.I.) .- Finite linear groups whose ring of invariants is a complete intersection, Bull. A.M.S.6 (1982). Zbl0483.14002MR640951
  8. [MBD] Miller ( G.A.), Blichfeldt ( H.F.) et Dickson ( L.E.) .— Theory and applications of finite groups, Dover publications inc., New-York (1916). Zbl0098.25103MR123600
  9. [Pr] Prill ( D.) . — Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J.34 (1967), pp. 375-386. Zbl0179.12301MR210944
  10. [R1] Reid ( M.) .- Canonical 3-folds, Journées de géométrie algébrique d'Angers, A. Beauville, Ed. Sijthoff en Noordhoff, Aalphen aan den Rijn (1980), pp. 273-310. Zbl0451.14014MR605348
  11. [R2] Reid ( M.) .- Minimal models of canonical 3-folds, Advanced Studies in Pure Math.1 (1983), Algebraic varieties and analytic varieties, pp. 131-180. Zbl0558.14028MR715649
  12. [Sl] Slodowy ( P.) .— Der Scheibensatz für algebraische Transformationsgruppen. In: algebraische Transformationsgruppen und Invarianten Theorie, Kraft H., Slodowy P., Springer T. A., Birkhäuser, DMV Seminar, band 13 (1989). Zbl0722.14031MR1044587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.