On the discrete Godbillon-Vey invariant and Dehn surgery on geodesic flows

Marco Brunella

Annales de la Faculté des sciences de Toulouse : Mathématiques (1994)

  • Volume: 3, Issue: 3, page 335-344
  • ISSN: 0240-2963

How to cite

top

Brunella, Marco. "On the discrete Godbillon-Vey invariant and Dehn surgery on geodesic flows." Annales de la Faculté des sciences de Toulouse : Mathématiques 3.3 (1994): 335-344. <http://eudml.org/doc/73338>.

@article{Brunella1994,
author = {Brunella, Marco},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {secondary invariants; hyperbolic surface; geodesic flow; topological conjugacy},
language = {eng},
number = {3},
pages = {335-344},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the discrete Godbillon-Vey invariant and Dehn surgery on geodesic flows},
url = {http://eudml.org/doc/73338},
volume = {3},
year = {1994},
}

TY - JOUR
AU - Brunella, Marco
TI - On the discrete Godbillon-Vey invariant and Dehn surgery on geodesic flows
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1994
PB - UNIVERSITE PAUL SABATIER
VL - 3
IS - 3
SP - 335
EP - 344
LA - eng
KW - secondary invariants; hyperbolic surface; geodesic flow; topological conjugacy
UR - http://eudml.org/doc/73338
ER -

References

top
  1. [BL] Bonatti ( C.) and Langevin ( R.) .— Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension, Preprint (1992). MR1304136
  2. [Chr] Christy ( J.) . — Intransitive Anosov flows, to appear on Memoirs AMS. 
  3. [Fri] Fried ( D.) .— Transitive Anosov flows and pseudo-Anosov maps, Topology22 (1983), pp. 299-303. Zbl0516.58035MR710103
  4. [Ghy] Ghys ( E.) . — Sur l'invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier37, n° 4, (1987), pp. 59-76. Zbl0633.58025MR927391
  5. [GH] Ghys ( E.) and Sergiescu ( V.) .— Sur un groupe remarquable de difféomorphismes du cercle, Comm. Math. Helv.62 (1987), pp. 185-239. Zbl0647.58009MR896095
  6. [Goo] Goodman ( S.) .— Dehn surgery on Anosov flows, Geometric Dynamics, SpringerLecture Notes1007 (1981), pp. 300-307. Zbl0532.58021MR1691596
  7. [Ha1] Hashiguchi ( N.) . — On the Anosov diffeomorphisms corresponding to geodesic flows on negatively curved closed surfaces, J. Fac. Sci. Univ. Tokyo37 (1990), pp. 485-494. Zbl0729.58040MR1071432
  8. [Ha2] Hashiguchi ( N.) .— PL-representations of Anosov foliations, Ann. Inst. Fourier42, n° 4 (1992), pp. 937-965. Zbl0759.57018MR1196100
  9. [HM] Hashiguchi ( N.) and Minakawa ( H.) .— Continuous variation of the discrete Godbillon-Vey invariant, J. Fac. Sci. Univ. Tokyo39 (1992), pp. 271-278. Zbl0786.57011MR1179769

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.