Positive solutions of an obstacle problem

Yang Jianfu

Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)

  • Volume: 4, Issue: 2, page 339-366
  • ISSN: 0240-2963

How to cite

top

Jianfu, Yang. "Positive solutions of an obstacle problem." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.2 (1995): 339-366. <http://eudml.org/doc/73354>.

@article{Jianfu1995,
author = {Jianfu, Yang},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {positive solutions; obstacle problem; variational inequality; exterior domain},
language = {eng},
number = {2},
pages = {339-366},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Positive solutions of an obstacle problem},
url = {http://eudml.org/doc/73354},
volume = {4},
year = {1995},
}

TY - JOUR
AU - Jianfu, Yang
TI - Positive solutions of an obstacle problem
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 2
SP - 339
EP - 366
LA - eng
KW - positive solutions; obstacle problem; variational inequality; exterior domain
UR - http://eudml.org/doc/73354
ER -

References

top
  1. [1] Ai Jun and Zhu Xiping .— Positive solutions of elliptic obstacle problems, Preprint. Zbl0686.35048
  2. [2] Ambrosetti ( A.) and Rabinowitz ( P.H.) .— Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), pp. 349-381. Zbl0273.49063MR370183
  3. [3] Benci ( V.) and Cerami ( G.) .— Positive solutions of some nonlinear elliptic problems in unbounded domains, Arch. Rational Mech. and Anal.99 (1987), pp. 283-300. Zbl0635.35036MR898712
  4. [4] Berestycki ( H.) and Lions ( P.L.) .— Nonlinear scalar field equations, I and II, Arch. Rational Mech. and Anal.82, No 4 (1983), pp. 313-375. Zbl0533.35029MR695535
  5. [5] Brezis ( H.) and Lieb ( E.H.) .— A relation between pointwise convergence of functions and convergence of integrals, Proc. Amer. Math. Soc.88 (1983), pp. 486-490. Zbl0526.46037MR699419
  6. [6] Kinderlehrer ( D.) and Stampacchia ( G.) .— An introduction to variational inequalities and their applications, Academic Press, New York (1980). Zbl0457.35001MR567696
  7. [7] Kwong ( M.K.) .— Uniqueness of positive solution of Δu - u + up = 0 in IRN, Arch. Rational Mech. and Anal.105 (1989), pp. 243-266. Zbl0676.35032MR969899
  8. [8] Lions ( P.L.) .— The concentration-compactness principle in the calculus of variations, the locally compact case, part 1 and part 2, Ann. Inst. H.-Poincaré Anal. Non linéaire1 (1984), pp. 109-145, 223-283. Zbl0704.49004MR778970
  9. [9] Mancini ( G.) and Musina ( R.) .— A free boundary problem involving limiting Sobolev exponents, Manuscripta Math.58 (1987), pp. 77-93. Zbl0601.49004MR884986
  10. [10] Mancini ( G.) and Musina ( R.) .— Holes and obstacles, Ann. Inst. H.-Poincaré Anal. Non linéaire5 (1988), pp. 323-345. Zbl0666.35039MR963103
  11. [11] Rodrigues ( J.F.) .— Obstacle problems in mathematical physics, Mathematics Studies134, The Netherlands (1987). Zbl0606.73017MR880369
  12. [12] Strauss ( W.) .— Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977), pp. 149-162. Zbl0356.35028MR454365
  13. [13] Stuart ( C.A.) .— Bifurcation in Lp(IRN) for a semilinear elliptic equation, Proc. London Math. Soc.57 (1988), pp. 511-541. Zbl0673.35005MR960098
  14. [14] Szukin ( A.) .— Minimax principle for lower semicontinous functions and applications to nonlinear boundary value problems, Ann. Inst. H.-Poincaré Anal. Non linéaire3 (1986), pp. 77-109. Zbl0612.58011
  15. [15] Yang ( J.F.) .— Positive solutions of semilinear elliptic problems in exterior domains, J. Diff. Equas.106 (1993), pp. 40-69. Zbl0809.35069MR1249176
  16. [16] Zhu ( X.P.) and Zhou ( H.S.) .— Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburg115A (1990), pp. 301-318. Zbl0741.35017MR1069524

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.