Positive solutions of an obstacle problem
Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)
- Volume: 4, Issue: 2, page 339-366
- ISSN: 0240-2963
Access Full Article
topHow to cite
topJianfu, Yang. "Positive solutions of an obstacle problem." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.2 (1995): 339-366. <http://eudml.org/doc/73354>.
@article{Jianfu1995,
author = {Jianfu, Yang},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {positive solutions; obstacle problem; variational inequality; exterior domain},
language = {eng},
number = {2},
pages = {339-366},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Positive solutions of an obstacle problem},
url = {http://eudml.org/doc/73354},
volume = {4},
year = {1995},
}
TY - JOUR
AU - Jianfu, Yang
TI - Positive solutions of an obstacle problem
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 2
SP - 339
EP - 366
LA - eng
KW - positive solutions; obstacle problem; variational inequality; exterior domain
UR - http://eudml.org/doc/73354
ER -
References
top- [1] Ai Jun and Zhu Xiping .— Positive solutions of elliptic obstacle problems, Preprint. Zbl0686.35048
- [2] Ambrosetti ( A.) and Rabinowitz ( P.H.) .— Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973), pp. 349-381. Zbl0273.49063MR370183
- [3] Benci ( V.) and Cerami ( G.) .— Positive solutions of some nonlinear elliptic problems in unbounded domains, Arch. Rational Mech. and Anal.99 (1987), pp. 283-300. Zbl0635.35036MR898712
- [4] Berestycki ( H.) and Lions ( P.L.) .— Nonlinear scalar field equations, I and II, Arch. Rational Mech. and Anal.82, No 4 (1983), pp. 313-375. Zbl0533.35029MR695535
- [5] Brezis ( H.) and Lieb ( E.H.) .— A relation between pointwise convergence of functions and convergence of integrals, Proc. Amer. Math. Soc.88 (1983), pp. 486-490. Zbl0526.46037MR699419
- [6] Kinderlehrer ( D.) and Stampacchia ( G.) .— An introduction to variational inequalities and their applications, Academic Press, New York (1980). Zbl0457.35001MR567696
- [7] Kwong ( M.K.) .— Uniqueness of positive solution of Δu - u + up = 0 in IRN, Arch. Rational Mech. and Anal.105 (1989), pp. 243-266. Zbl0676.35032MR969899
- [8] Lions ( P.L.) .— The concentration-compactness principle in the calculus of variations, the locally compact case, part 1 and part 2, Ann. Inst. H.-Poincaré Anal. Non linéaire1 (1984), pp. 109-145, 223-283. Zbl0704.49004MR778970
- [9] Mancini ( G.) and Musina ( R.) .— A free boundary problem involving limiting Sobolev exponents, Manuscripta Math.58 (1987), pp. 77-93. Zbl0601.49004MR884986
- [10] Mancini ( G.) and Musina ( R.) .— Holes and obstacles, Ann. Inst. H.-Poincaré Anal. Non linéaire5 (1988), pp. 323-345. Zbl0666.35039MR963103
- [11] Rodrigues ( J.F.) .— Obstacle problems in mathematical physics, Mathematics Studies134, The Netherlands (1987). Zbl0606.73017MR880369
- [12] Strauss ( W.) .— Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977), pp. 149-162. Zbl0356.35028MR454365
- [13] Stuart ( C.A.) .— Bifurcation in Lp(IRN) for a semilinear elliptic equation, Proc. London Math. Soc.57 (1988), pp. 511-541. Zbl0673.35005MR960098
- [14] Szukin ( A.) .— Minimax principle for lower semicontinous functions and applications to nonlinear boundary value problems, Ann. Inst. H.-Poincaré Anal. Non linéaire3 (1986), pp. 77-109. Zbl0612.58011
- [15] Yang ( J.F.) .— Positive solutions of semilinear elliptic problems in exterior domains, J. Diff. Equas.106 (1993), pp. 40-69. Zbl0809.35069MR1249176
- [16] Zhu ( X.P.) and Zhou ( H.S.) .— Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburg115A (1990), pp. 301-318. Zbl0741.35017MR1069524
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.