Propriétés multiplicatives universelles de certains quotients d'algèbres de Fréchet

Jean Esterle

Annales de la Faculté des sciences de Toulouse : Mathématiques (1996)

  • Volume: 5, Issue: 4, page 645-659
  • ISSN: 0240-2963

How to cite

top

Esterle, Jean. "Propriétés multiplicatives universelles de certains quotients d'algèbres de Fréchet." Annales de la Faculté des sciences de Toulouse : Mathématiques 5.4 (1996): 645-659. <http://eudml.org/doc/73398>.

@article{Esterle1996,
author = {Esterle, Jean},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {commutative, unital Fréchet algebra; dense, prime ideal; multiplicative semigroup; closed ideals; continuum hypothesis; torsionfree cancellative semigroup},
language = {fre},
number = {4},
pages = {645-659},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Propriétés multiplicatives universelles de certains quotients d'algèbres de Fréchet},
url = {http://eudml.org/doc/73398},
volume = {5},
year = {1996},
}

TY - JOUR
AU - Esterle, Jean
TI - Propriétés multiplicatives universelles de certains quotients d'algèbres de Fréchet
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1996
PB - UNIVERSITE PAUL SABATIER
VL - 5
IS - 4
SP - 645
EP - 659
LA - fre
KW - commutative, unital Fréchet algebra; dense, prime ideal; multiplicative semigroup; closed ideals; continuum hypothesis; torsionfree cancellative semigroup
UR - http://eudml.org/doc/73398
ER -

References

top
  1. [1] Alling ( N.) .— On ordered divisible groups, Trans. Amer. Math. Soc.30 (1972), pp. 329-340. MR140595
  2. [2] Arens ( R.) . — Dense inverse limit rings, Michigan Math. J.5 (1958), pp. 168-182. Zbl0087.31802MR105034
  3. [3] Clayton ( D.) .— A reduction of the continuous homomorphism problem for F-algebras, Rocky Mountains Math. J.5 (1975), pp. 337-344. Zbl0325.46055MR390771
  4. [4] Dixon ( P.-G.) et Esterle ( J.) .— Michael's problem and the Poincaré-Fatou-Bieberbach phenomenon, Bull. Amer. Math. Soc.15 (1986), pp. 127-187. Zbl0608.32008MR854551
  5. [5] Esterle ( J.) .— Solution d'un problème d'Erdös, Gilman et Henriksen et application à l'étude des homomorphismes de C(K), Acta. Math. (Hungarica), 30 (1977), pp. 113-127. Zbl0411.46037MR482216
  6. [6] Esterle ( J.) . — Sur l'existence d'un homomorphisme discontinu de C(K), Proc. London Math. Soc.36, n° 3 (1978), pp. 46-58. Zbl0411.46038MR482217
  7. [7] Esterle ( J.) . — Injection de semigroupes divisibles dans les algèbres de convolution et construction d'homomorphismes discontinus de C(K), Proc. London Math. Soc.36, n° 3 (1978), pp. 59-85. Zbl0411.46039MR482218
  8. [8] Esterle ( J.) .— Homomorphismes discontinus des algèbres de Banach commutatives séparables, Studia Math.66 (1979), pp. 119-141. Zbl0353.46045MR565154
  9. [9] Esterle ( J.) . — Universal properties of some commutative radical Banach algebras, J. für Reine und Ang. Math.321 (1981), pp. 1-24. Zbl0438.46037MR597976
  10. [10] Esterle ( J.) .— Real semigroups in commutative Banach algebras, SpringerLect. Notes1221 (1986), pp. 16-35. Zbl0626.46048MR875005
  11. [11] Esterle ( J.) . — Idéaux maximaux denses dans les algèbres de Fréchet, Bull. Sci. Math.119 (1995), pp. 187-194. Zbl0826.46043MR1324843
  12. [12] Esterle ( J.) .— Picard's theorem, Mittag-Leffler methods, and continuity of characters on Fréchet algebras, Annales Scient. Ec. Norm. Sup.29 (1996), pp. 539-582. Zbl0890.46039MR1399616
  13. [13] Esterle ( J.) .— Embedding divisible semigroups in radical Banach algebras, en préparation. 
  14. [14] Fuchs ( L.) .— Partially ordered algebraic systems, Pergamon Press, Oxford, 1963. Zbl0137.02001MR171864
  15. [15] Michael ( E.A.) .— Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc.11 (1952). Zbl0047.35502MR51444
  16. [16] Sierpinski ( W.) .— Sur une propriété des ensembles ordonnés, Fund. Math.5 (1949), pp. 14-19. MR31528
  17. [17] Zouakia ( F.) . — The theory of Cohen elements, SpringerLect. Notes975 (1983), pp. 163-178. Zbl0504.46037MR697580
  18. [18] Zouakia ( F.) .— Semi-groupes réels dans les algèbres de Banach commutatives, J. London Math. Soc.36, n° 2 (1987), pp. 543-552. Zbl0651.46054MR918644

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.