Picard's theorem, Mittag-Leffler methods, and continuity of characters on Fréchet algebras

J. Esterle

Annales scientifiques de l'École Normale Supérieure (1996)

  • Volume: 29, Issue: 5, page 539-582
  • ISSN: 0012-9593

How to cite

top

Esterle, J.. "Picard's theorem, Mittag-Leffler methods, and continuity of characters on Fréchet algebras." Annales scientifiques de l'École Normale Supérieure 29.5 (1996): 539-582. <http://eudml.org/doc/82417>.

@article{Esterle1996,
author = {Esterle, J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {character on a Fréchet algebra necessarily continuous; continuum hypothesis},
language = {eng},
number = {5},
pages = {539-582},
publisher = {Elsevier},
title = {Picard's theorem, Mittag-Leffler methods, and continuity of characters on Fréchet algebras},
url = {http://eudml.org/doc/82417},
volume = {29},
year = {1996},
}

TY - JOUR
AU - Esterle, J.
TI - Picard's theorem, Mittag-Leffler methods, and continuity of characters on Fréchet algebras
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1996
PB - Elsevier
VL - 29
IS - 5
SP - 539
EP - 582
LA - eng
KW - character on a Fréchet algebra necessarily continuous; continuum hypothesis
UR - http://eudml.org/doc/82417
ER -

References

top
  1. [1] G. R. ALLAN, Embedding the algebra of all formal power series in a Banach algebra (Proc. London Math. Soc. (3), Vol. 25, 1972, pp. 329-340). Zbl0243.46059MR46 #4201
  2. [2] R. ARENS, Dense inverse limit rings (Michigan Math. J., Vol. 5, 1958, pp. 169-182). Zbl0087.31802MR21 #3780
  3. [3] R. ARENS, The analytic functional calculus in commutative topological algebras (Pac. J. Math., Vol. 11, 1961, pp. 405-429). Zbl0109.34203MR25 #4373
  4. [4] R. ARENS, To what extent does the space of maximal ideals determine the algebras (Function Algebras Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965, Scott-Foresman, Chicago, Illinois, 1966, pp. 164-168). Zbl0144.17003MR33 #3126
  5. [5] L. BIEBERBACH, Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlichte volumtreue Abbildung des ℝ4 auf einen Teil seiner selbst vermitteln (S. B. Preuss Akad. Wiss., Vol. 14/15, 1933, pp. 476-479). Zbl0007.21502JFM59.0344.02
  6. [6] A. BLOCH, Sur les systèmes de fonctions uniformes satisfaisant à l'équation d'une variété algébrique dont l'irrégularité dépasse la dimension (J. Math. Pures et Appl., (1), Vol. 5, 1926, pp. 19-66). Zbl52.0373.04JFM52.0373.04
  7. [7] E. BOREL, Sur les zéros des fonctions entières (Acta Math., Vol. 20, 1897, pp. 357-396). Zbl28.0360.01JFM28.0360.01
  8. [8] N. BOURBAKI, Topologie Générale, Chap. II, Hermann, Paris, 1960. 
  9. [9] D. CLAYTON, A reduction of the continuous homomorphism problem for F-algebras (Rocky Mountain J. Math., Vol. 5, 1975, pp. 337-344). Zbl0325.46055MR52 #11594
  10. [10] D. COUTY, Formes réduites des automorphismes de ℂn à variété linéaire fixe et répulsive (Springer Lect. Notes, Vol. 1404, 1989, pp. 346-410). Zbl0712.32007MR91c:32022
  11. [11] I. CRAW, A condition equivalent to the continuity of characters on a Fréchet algebra (Proc. London Math. Soc., (3), Vol. 22, 1971, pp. 452-464). Zbl0219.46035MR44 #4524
  12. [12] H. G. DALES, A discontinuous homomorphism from C(X) (Amer. J. Math., (1), Vol. 101, 1979, pp. 647-734). Zbl0417.46054MR81g:46066
  13. [13] H. G. DALES and J. P. McCLURE, Higher point derivations on commutative Banach algebras, II (J. London Math. Soc., (2), Vol. 16, 1977, pp. 313-325). Zbl0365.46042MR57 #13498b
  14. [14] H. G. DALES and W. H. WOODIN, An introduction to independence for analysts (London Math. Soc. Lect. Notes, Vol. 115, Cambridge University Press, 1987). Zbl0629.03030MR90d:03101
  15. [15] A. M. DAVIE, Homotopy in Fréchet algebras (Proc. London Math. Soc., (3), Vol. 23, 1971, pp. 31-52). Zbl0218.46044MR45 #5756
  16. [16] P. G. DIXON and J. ESTERLE, Michael's problem and the Poincaré-Fatou-Bieberbach phenomenon (Bull. A.M.S., (2), Vol. 15, 1986, pp. 127-187). Zbl0608.32008MR88d:46090
  17. [17] J. ESTERLE, Solution d'un problème d'Erdös, Gillman et Henriksen et application à l'étude des homomorphismes de C(K) (Acta Math., Hungarica, Vol. 30, 1977, pp. 113-127). Zbl0411.46037MR58 #2298
  18. [18] J. ESTERLE, Sur l'existence d'un homomorphisme discontinu de C(K) (Proc. London Math. Soc., (3), Vol. 36, 1978, pp. 46-58). Zbl0411.46038MR58 #2299
  19. [19] J. ESTERLE, Injection de semigroupes divisibles dans des algèbres de convolution et construction d'homomorphismes discontinus de C(K) (Proc. London Math. Soc., (3), Vol. 36, 1978, pp. 59-85). Zbl0411.46039MR58 #2300
  20. [20] J. ESTERLE, Homomorphismes discontinus des algèbres de Banach commutatives séparables (Studia Math., Vol. 66, 1979, pp. 119-141). Zbl0353.46045MR81m:46067
  21. [21] J. ESTERLE, Universal properties of some commutative radical Banach algebras (J. Reine Ang. Math., Vol. 321, 1981, pp. 1-24). Zbl0438.46037MR82i:46078
  22. [22] J. ESTERLE, Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem (Contemp. Math., Vol. 32, 1984, pp. 107-129). Zbl0569.46031MR86a:46056
  23. [23] J. ESTERLE, Real semigroups in commutative Banach algebras (Springer Lect. Notes, Vol. 1221, 1986, pp. 16-35). Zbl0626.46048MR88c:46061
  24. [24] J. ESTERLE, Idéaux maximaux denses dans les algèbres de Fréchet (Bull. Sci. Math., Vol. 119, 1995, pp. 187-194). Zbl0826.46043MR96d:46070
  25. [25] J. ESTERLE, Propriétés multiplicatives universelles de certains quotients d'algèbres de Fréchet, submitted. 
  26. [26] P. FATOU, Sur certaines fonctions uniformes de deux variables (C. R. Acad. Sci. Paris, Vol. 175, 1922, pp. 1030-1033). Zbl48.0391.03JFM48.0391.03
  27. [27] J. E. FORNAESS and N. SIBONY, Complex Henon mappings in ℂ2 and Fatou-Bieberbach domains (Duke Math. J., (2), Vol. 65, 1992, pp. 345-380). Zbl0761.32015MR93d:32040
  28. [28] R. FRANKIEWICZ and P. ZBIERSKI, Hausdorff gaps and limits, Van Nostrand, 1994. Zbl0821.54001MR96d:03002
  29. [29] L. FUCHS, Partially ordered algebraic systems, Pergamon Press, Oxford, 1963. Zbl0137.02001MR30 #2090
  30. [30] L. GRUMANN, L'image d'une application holomorphe (Annales Fac. Sci. Toulouse, (1), 12, 1991, pp. 75-101). Zbl0749.32016MR94a:32039
  31. [31] R. C. GUNNING and H. ROSSI, Analytic functions of several complex variables, Prentice Hall, Englewood Cliffs, 1965. Zbl0141.08601MR31 #4927
  32. [32] H. HAHN, Über die nichtarchimedischen Gröβensysteme (S. B. Akad. Wiss. Wien, Vol. 116, 1907, pp. 601-655). Zbl38.0501.01JFM38.0501.01
  33. [33] G. H. HALPHEN, Sur la réduction des équations différentielles linéaires aux formes intégrables (Mémoires de l'Académie des Sciences, (1), Vol. 28, 1884, pp. 1-260). 
  34. [34] J. H. HUBBARD and R. OBERSTE-VORTH, Henon mappings in the complex domain (preprint). Zbl0839.54029
  35. [35] S. MacLANE, The universality of power series fields (Bull. Amer. Math. Soc., Vol. 45, 1939, pp. 888-890). Zbl0022.30401MR1,102cJFM65.0093.02
  36. [36] E. A. MICHAEL, Locally multiplicatively convex topological algebras (Mem. Amer. Math. Soc., Vol. 11, 1952). Zbl0047.35502MR14,482a
  37. [37] J. MUJICA, Complex analysis in Banach spaces. Holomorphic functions and domains of holomorphy in infinite dimensions, North Holland, 1986. Zbl0586.46040
  38. [38] R. NEVANLINNA, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929. JFM55.0773.03
  39. [39] Y. NISHIMURA, Applications holomorphes injectives de ℂ2 dans lui-même qui exceptent une droite complexe (J. Math. Kyoto. Univ., (4), Vol. 24, 1984, pp. 755-761). Zbl0574.32036MR86h:32043
  40. [40] Y. NISHIMURA, Applications holomorphes injectives à jacobien constant de deux variables (J. Math. Kyoto Univ., (4), Vol. 26, 1986, pp. 697-709). Zbl0625.32022MR87m:32054
  41. [41] E. PICARD, Sur les fonctions entières (C. R. Acad. Sci. Paris, Vol. 89, 1879, pp. 662-665). JFM11.0268.01
  42. [42] H. POINCARÉ, Sur une classe nouvelle de transcendantes uniformes (J. de Mathématiques, Vol. 6, 1890, pp. 313-355). JFM22.0420.01
  43. [43] J. P. ROSAY and W. RUDIN, Holomorphic maps from ℂn to ℂn (Trans. Amer. Math. Soc., (1), Vol. 310, 1988, pp. 47-86). Zbl0708.58003MR89d:32058
  44. [44] J. P. ROSAY and W. RUDIN, Growth of volumes in Fatou-Bieberbach domains (Publ. Res. Inst. Math. Sci., Vol. 29, 1993, pp. 161-166). Zbl0780.32002MR93k:32045
  45. [45] H. ROYDEN, Function algebras (Bull. Amer. Math. Soc., Vol. 69, 1963, pp. 281-298). Zbl0111.11802MR26 #6817
  46. [46] M. SCHOTTENLOHER, Michael problem and algebras of holomorphic functions (Arch. Math., Vol. 37, 1981, pp. 241-247). Zbl0471.46036MR83b:46061
  47. [47] T. S. SHAH, On semi-normed rings with involution (Izv. Akad. Nauk. SSSR, (Russian), Vol. 23, 1959, pp. 509-528). MR22 #4968
  48. [48] A. M. SINCLAIR, Continuous semigroups in Banach algebras (London Math. Soc. Lect. Notes, Vol. 63, 1982). Zbl0493.46042MR84b:46053
  49. [49] M. THOMAS, The image of a derivation is contained in the radical (Ann. of Math., Vol. 128, 1988, pp. 435-460). Zbl0681.47016MR90d:46075
  50. [50] W. H. WOODIN, Set theory and discontinuous homomorphisms from Banach algebras (Ph. D. Thesis, University of California at Berkeley, 1984). 
  51. [51] W. H. WOODIN, A discontinuous homomorphism from C(X) without CH (J. London Math. Soc., (2), Vol. 48, 1993, pp. 299-315). Zbl0804.46063MR94g:46055
  52. [52] O. ZARISKI and P. SAMUEL, Commutative Algebra, Vol. II, Van Nostrand, 1960. Zbl0121.27801MR22 #11006
  53. [53] W. ZELASKO, Maximal ideals in commutative m-convex algebras (Studia Math., Vol. 58, 1976, pp. 291-298). Zbl0344.46103MR55 #8803
  54. [54] F. ZOUAKIA, The theory of Cohen elements (Springer Lect. Notes, Vol. 975, 1983, pp. 163-178). Zbl0504.46037MR84f:46069
  55. [55] F. ZOUAKIA, Semigroupes réels dans les algèbres de Banach commutatives (J. London Math. Soc., (2), Vol. 35, 1987, pp. 543-552). Zbl0651.46054MR89c:46067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.