Asymptotique dans un corps de Hardy

François Blais

Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)

  • Volume: 6, Issue: 1, page 77-103
  • ISSN: 0240-2963

How to cite

top

Blais, François. "Asymptotique dans un corps de Hardy." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.1 (1997): 77-103. <http://eudml.org/doc/73413>.

@article{Blais1997,
author = {Blais, François},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {asymptotic problems; inversion of functions; Hardy field of exp-log-functions},
language = {fre},
number = {1},
pages = {77-103},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Asymptotique dans un corps de Hardy},
url = {http://eudml.org/doc/73413},
volume = {6},
year = {1997},
}

TY - JOUR
AU - Blais, François
TI - Asymptotique dans un corps de Hardy
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 1
SP - 77
EP - 103
LA - fre
KW - asymptotic problems; inversion of functions; Hardy field of exp-log-functions
UR - http://eudml.org/doc/73413
ER -

References

top
  1. [B] Borel ( E.) .— Leçons sur la théorie de la croissance, Gauthier-Villars, Paris, 1910. Zbl41.0459.02MR33328JFM41.0459.02
  2. [Bo] Bourbaki ( N.) .— Éléments de Mathématiques, chap. V (Fonctions d'une variable réelle), Hermann, Paris, 1951, seconde édition 1961. MR580296
  3. [Br] De Bruijn ( N.G.) .— Asymptotic method in analysis, North-Holland Publishing Company, Amsterdam, London, Third edition (1970). 
  4. [DD] Deledick ( A.) ET Diener ( M.) .— Leçons de calcul infinitésimal, Armand Colin, Paris, Collection U (1989). 
  5. [DR] Diener ( F.) et Reeb ( G.) .— Analyse non standard, Herman, Collection Enseignement des sciences, Paris, 1989. Zbl0682.26010MR1026099
  6. [DVdB] Diener ( M.) et Van Der Berg ( I.P.) .— Halos et galaxies, une extension du lemme de Robinson, Comptes Rendus de l'Académie des Sciences de Paris, 293 (1981), pp. 385-388. MR641092
  7. [H1] Hardy ( G.H.) .— Orders of infinity, Cambridge Tracts in Mathematics12 (1910). JFM41.0303.01
  8. [H2] Hardy ( G.H.) .— Properties of logarithmo-exponential functions, Proceedings of the London Mathematical Society10, n° 2 (1911), pp. 54-90. JFM42.0437.02
  9. [N] Nelson ( E.) .— Internal set theory: a new approach to non-standard analysis, Bulletin American Society83, n° 6 (1977), pp. 1165-1198. Zbl0373.02040MR469763
  10. [R1] Rosenlicht ( M.) . — Hardy fields, Journal of Mathematical Analysis and Applications93 (1983), pp. 297-311. Zbl0518.12014MR700146
  11. [R2] Rosenlicht ( M.) .— The rank of a Hardy field, Transactions of the American Mathematical Society280, n° 2 (1983), pp. 659-671. Zbl0536.12015MR716843
  12. [R3] Rosenlicht ( M.) .— Rank change on adjoining real powers to Hardy fields, Transactions of the American Mathematical Society284, n° 2 (1984), pp. 829-836. Zbl0544.34052MR743747
  13. [R4] Rosenlicht ( M.) . — Growth properties of functions in Hardy fields, Transactions of the American Mathematical Society299, n° 1 (1987), pp. 261-272. Zbl0619.34057MR869411
  14. [Sa] Salvy ( B.) . — Asymptotique automatique et fonctions génératrices, Thèse École Polytechnique, 1991. 
  15. [SaS] Salvy ( B.) et Shackell ( J.) .— Asymptotic expansions of functional inverses, Proceedings ISSAC'92, P. Wang éd., ACM Press, 1992. Zbl0964.68585
  16. [S1] Shackell ( J.) .— Extensions of asymptotics fields via meromorphic functions, Journal of London Mathematical Society (2) 52, n° 2 (1995), pp. 356-374. Zbl0852.26003MR1356148
  17. [S2] Shackell ( J.) .— Limits of Liouvillian functions, Proceedings of the London Mathematical Society (3) 72, n° 1 (1996), pp. 124-156. Zbl0845.26001MR1357090

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.