On singular and supersingular invariants of Drinfeld modules

Andreas Schweizer

Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)

  • Volume: 6, Issue: 2, page 319-334
  • ISSN: 0240-2963

How to cite

top

Schweizer, Andreas. "On singular and supersingular invariants of Drinfeld modules." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.2 (1997): 319-334. <http://eudml.org/doc/73423>.

@article{Schweizer1997,
author = {Schweizer, Andreas},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {-function; rank 2 Drinfeld modules; singular invariants; isomorphy classes; supersingular invariants},
language = {eng},
number = {2},
pages = {319-334},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On singular and supersingular invariants of Drinfeld modules},
url = {http://eudml.org/doc/73423},
volume = {6},
year = {1997},
}

TY - JOUR
AU - Schweizer, Andreas
TI - On singular and supersingular invariants of Drinfeld modules
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 2
SP - 319
EP - 334
LA - eng
KW - -function; rank 2 Drinfeld modules; singular invariants; isomorphy classes; supersingular invariants
UR - http://eudml.org/doc/73423
ER -

References

top
  1. [Bae] Bae ( S.). — On the Modular Equation for Drinfeld Modules of Rank 2, J. Number Theory42 (1992), pp. 123-133. Zbl0754.11018MR1183371
  2. [Da] David ( C.).— Supersingular Reduction of Drinfel'd Modules, Duke Math. J.78 (1995), pp. 399-412. Zbl0842.11025MR1333507
  3. [Do] Dorman ( D.R.).— On singular moduli for rank 2 Drinfeld modules, Compositio Math.80 (1991), pp. 235-256. Zbl0744.11032MR1134255
  4. [Du] Dummit ( D.S.) . - Genus Two Hyperelliptic Drinfeld Modules over F2, in: The Arithmetic of Function Fields, Proceedings of the Workshop at the Ohio State University (June 17-26, 1991); (D. Goss, D. Hayes, M. Rosen) de Gruyter, Berlin, New York, 1992, pp. 117-129. Zbl0793.11016MR1196515
  5. [DuHa] Dummit ( D.S.) and Hayes ( D.).— Rank one Drinfeld modules on elliptic curves, Math. Comp.62, n° 206 (1994), pp. 875-883, plus 3 microfiches. Zbl0793.11017MR1218342
  6. [Ei1] Eichler ( M.).— Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math.195 (1955), pp. 127-151; Berichtigung: J. Reine Angew. Math.197 (1957), p. 220. Zbl0068.03303MR80767
  7. [Ei2] Eichler ( M.).— New formulas for the class number of imaginary quadratic fields, Acta Arithmetica49 (1987), pp. 35-43. Zbl0599.12005MR913762
  8. [Ge1] Gekeler ( E.U.) . — Zur Arithmetik von Drinfeld-Moduln, Math. Annalen262 (1983), pp. 167-182. Zbl0536.14028MR690193
  9. [Ge2] Gekeler ( E.U.) . — Über Drinfeld'sche Modulkurven vom Hecke-Typ, Compositio Math.57 (1986), pp. 219-236. Zbl0599.14032MR827352
  10. [Ge3] Gekeler ( E.U.).— On the coefficients of Drinfeld modular forms, Invent. Math.93 (1988), pp. 667-700. Zbl0653.14012MR952287
  11. [Ge4] Gekeler ( E.U.) . — On finite Drinfeld modules, J. Algebra141 (1991), pp. 187-203. Zbl0731.11034MR1118323
  12. [Ha] Hayes ( D.).— On the reduction of rank-one Drinfeld modules, Math. Comp.57, n° 195 (1991), pp. 339-349. Zbl0732.11029MR1079021
  13. [Hu] Husemöller ( D.) . — Elliptic Curves, Springer GTM 111, BerlinHeidelbergNew York, (1987). Zbl0605.14032MR868861
  14. [Ka] Kaneko ( M.).— Supersingular j-invariants as singular moduli mod p, Osaka J. Math.26 (1989), pp. 849-855. Zbl0733.14013MR1040429
  15. [La] Lang ( S.).— Elliptic Functions, Addison-Wesley, Reading, (1973). Zbl0316.14001MR409362
  16. [McR] Macrae ( R.E.).— On Unique Factorization in Certain Rings of Algebraic Functions, J. Algebra17 (1971), pp. 243-261. Zbl0212.53302MR272762
  17. [Sch1] Schweizer ( A.).— On the Drinfeld Modular Polynomial ΦT(X,Y), J. Number Theory52 (1995), pp. 53-68. Zbl0826.11026MR1331765
  18. [Sch2] Schweizer ( A.) . — Hyperelliptic Drinfeld Modular Curves, in: Drinfeld modules, modular schemes and applications, Proceedings of a workshop at Alden Biesen (September 9-14, 1996); (J. van Geel, E.-U. Gekeler, M. van der Put, M. Reversat) World Scientific, Singapore, in press. Zbl0930.11039MR1630612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.