Über Drinfeld'sche modulkurven vom Hecke-Typ

Ernst-Ulrich Gekeler

Compositio Mathematica (1986)

  • Volume: 57, Issue: 2, page 219-236
  • ISSN: 0010-437X

How to cite

top

Gekeler, Ernst-Ulrich. "Über Drinfeld'sche modulkurven vom Hecke-Typ." Compositio Mathematica 57.2 (1986): 219-236. <http://eudml.org/doc/89754>.

@article{Gekeler1986,
author = {Gekeler, Ernst-Ulrich},
journal = {Compositio Mathematica},
keywords = {finite ground field; Drinfeld modular curve; order of the cusp divisor class; Atkin-Lehner involution},
language = {ger},
number = {2},
pages = {219-236},
publisher = {Martinus Nijhoff Publishers},
title = {Über Drinfeld'sche modulkurven vom Hecke-Typ},
url = {http://eudml.org/doc/89754},
volume = {57},
year = {1986},
}

TY - JOUR
AU - Gekeler, Ernst-Ulrich
TI - Über Drinfeld'sche modulkurven vom Hecke-Typ
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 57
IS - 2
SP - 219
EP - 236
LA - ger
KW - finite ground field; Drinfeld modular curve; order of the cusp divisor class; Atkin-Lehner involution
UR - http://eudml.org/doc/89754
ER -

References

top
  1. [1] A. Brumer: Courbes modulaires, Grenoble1975. 
  2. [2] P. Deligne and D. Mumford: The irreducibility of the space of curves of given genus, Publ. IHES no. 36 (1969) 75-110. Zbl0181.48803MR262240
  3. [3] P. Deligne and M. Rapoport: Les schémas de modules de courbes elliptiques. In: Modular Forms of One Variable II, Lecture Notes in Mathematics, Vol. 349, Berlin- Heidelberg-New York: Springer (1973). Zbl0281.14010MR337993
  4. [4] V.G. Drinfeld: Elliptic modules, Math. USSR-Sbornik23 (1976) 561-592. Zbl0386.20022
  5. [5] E. Gekeler: Drinfeld-Moduln und modulare Formen über rationalen Funktionen-körpern. Bonner Math. Schriften119 (1980). Zbl0446.14018MR594434
  6. [6] E. Gekeler: Zur Arithmetik von Drinfeld-Moduln, Math. Annalen256 (1982) 549-560. Zbl0536.14028
  7. [7] E. Gekeler: A Product Expansion for the Discriminant Function of Drinfeld Modules Jour. Number Theory21 (1985) 135-140. Zbl0572.10021MR808282
  8. [8] E. Gekeler: Modulare Einheiten für Funktionenkörper, Crelle's Journal348 (1984) 94-115. Zbl0523.14021MR733925
  9. [9] E. Gekeler: Automorphe Formen über Fq(T) mit kleinem Führer (in Vorbereitung). Zbl0564.10026
  10. [10] D. Goss: π-adic Eisenstein series for function fields, Comp. Math.41 (1980) 3-38. Zbl0388.10020
  11. [11] D. Goss: The algebraist's upper half-plane, Bull. Amer. Math. Soc.2 (1980) 391-415. Zbl0433.14017MR561525
  12. [12] D. Goss: Modular forms for Fr[T], Crelle's Journal231 (1980) 16-39. Zbl0422.10021MR581335
  13. [13] D. Hayes: Explicit class field theory for rational function fields, Trans. Amer. Math. Soc.189 (1974) 77-91. Zbl0292.12018MR330106
  14. [14] J. Lipman: Rational singularities with applications to algebraic surfaces and unique factorization, Publ. IHES no. 36 (1969) 195-280. Zbl0181.48903MR276239
  15. [15] B. Mazur: Modular curves and the Eisenstein ideal, Publ. IHES no. 47 (1977) p. 33-186. Zbl0394.14008MR488287
  16. [16] A. Ogg: Rational Points on Certain Elliptic Modular Curves, AMS Conference St. Louis (1972) 221-231. Zbl0273.14008MR337974
  17. [17] M. Raynaud: Spécialisation du Foncteur de Picard, Publ. IHES no. 38 (1970) 27-76. Zbl0207.51602MR282993

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.