Weak solutions of quasilinear elliptic PDE's at resonance

Gianni Arioli; Filippo Gazzola

Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)

  • Volume: 6, Issue: 4, page 573-589
  • ISSN: 0240-2963

How to cite

top

Arioli, Gianni, and Gazzola, Filippo. "Weak solutions of quasilinear elliptic PDE's at resonance." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.4 (1997): 573-589. <http://eudml.org/doc/73434>.

@article{Arioli1997,
author = {Arioli, Gianni, Gazzola, Filippo},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {resonance at infinity; existence},
language = {eng},
number = {4},
pages = {573-589},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Weak solutions of quasilinear elliptic PDE's at resonance},
url = {http://eudml.org/doc/73434},
volume = {6},
year = {1997},
}

TY - JOUR
AU - Arioli, Gianni
AU - Gazzola, Filippo
TI - Weak solutions of quasilinear elliptic PDE's at resonance
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 4
SP - 573
EP - 589
LA - eng
KW - resonance at infinity; existence
UR - http://eudml.org/doc/73434
ER -

References

top
  1. [1] Arcoya ( D.) and Boccardo ( L.). — Critical points for multiple integrals of the calculus of variations, Arch. Rat. Mech. Anal.134 (1996), pp. 249-274. Zbl0884.58023MR1412429
  2. [2] Brezis ( H.) and Browder ( F.E.) . — Sur une propriété des espaces de Sobolev, C. R. Acad. Sc., Paris, 287 (1978), pp. A113-A115. Zbl0381.46019MR511925
  3. [3] Canino ( A.) . - Multiplicity of solutions for quasilinear elliptic equations, Top. Meth. Nonlin. Anal.6 (1995), pp. 357-370. Zbl0863.35038MR1399545
  4. [4] Canino ( A.) and Degiovanni ( M.) .- Nonsmooth critical point theory and quasilinear elliptic equations, Topological Methods in Differential Equations and Inclusions, Montreal1994, NATO ASI Series, pp. 1-50. Zbl0851.35038MR1368669
  5. [5] Cerami ( G.) .- Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Ist. Sci. Lombardo112 (1978), pp. 332-336. Zbl0436.58006
  6. [6] Corvellec ( J.N.) .- Morse theory for continuous functionals, to appear in J. Math. Anal. Appl.196 (1995), pp. 1050-1072. Zbl0853.58028MR1365240
  7. [7] Corvellec ( J.N.) and Degiovanni ( M.) .- Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Diff. Eq.136 (1997), pp. 268-293. Zbl1139.35335MR1448826
  8. [8] Corvellec ( J.N.), Degiovanni ( M.) and Marzocchi ( M.) .— Deformation properties for continuous functionals and critical point theory, Top. Meth. Nonlin. Anal.1 (1993), pp. 151-171. Zbl0789.58021MR1215263
  9. [9] Degiovanni ( M.) and Marzocchi ( M.) .— A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl.IV, CLXVII (1994), pp. 73-100. Zbl0828.58006MR1313551
  10. [10] Katriel ( G.) .- Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H.-Poincaré, A.N.L.11 (1994), pp. 189-209. Zbl0834.58007MR1267366
  11. [11] Ladyzhenskaya ( O.A.) and URAL'TSEVA ( N.N.) .- Linear and quasilinear elliptic equations, Academic Press, New York, 1968. Zbl0164.13002MR244627
  12. [12] Rabinowitz ( P.H.) .- Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Series Math.65, Amer. Math. Soc., Providence, R.I., 1986. Zbl0609.58002MR845785
  13. [13] Struwe ( M.) . — Multiple solutions of differential equations without the Palais-Smale condition, Math. Ann.261 (1982), pp. 399-412. Zbl0506.35034MR679798
  14. [14] Struwe ( M.) .- Quasilinear elliptic eigenvalue problems, Comment. Math. Helvetici58 (1983), pp. 509-527. Zbl0531.35035MR727715
  15. [15] Szulkin ( A.) .- Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H.-Poincaré, A.N.L.3 (1986), pp. 77-109. Zbl0612.58011MR837231

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.