Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in
Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)
- Volume: 7, Issue: 1, page 51-85
- ISSN: 0240-2963
Access Full Article
topHow to cite
topKamimoto, Joe. "Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in ${\bf C}^2$." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.1 (1998): 51-85. <http://eudml.org/doc/73445>.
@article{Kamimoto1998,
author = {Kamimoto, Joe},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Bergman kernel; Szegő kernel; weakly pseudoconvex domain; tube domain; asymptotic expansion},
language = {eng},
number = {1},
pages = {51-85},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in $\{\bf C\}^2$},
url = {http://eudml.org/doc/73445},
volume = {7},
year = {1998},
}
TY - JOUR
AU - Kamimoto, Joe
TI - Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in ${\bf C}^2$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 1
SP - 51
EP - 85
LA - eng
KW - Bergman kernel; Szegő kernel; weakly pseudoconvex domain; tube domain; asymptotic expansion
UR - http://eudml.org/doc/73445
ER -
References
top- [1] Aladro ( G.) .- The compatibly of the Kobayashi approach region and the admissible approach region, Illinois J. Math.33 (1989), pp. 27-41 . Zbl0647.32023MR974010
- [2] Bergman ( S.) .- Zur Theorie von pseudokonformen Abbildungen, Math. Sbornik. Akad. Nauk SSSR (1936), pp. 79-96. Zbl0014.02603JFM62.0400.02
- [3] Boas ( H.P.), Fu ( S.) and Straube ( E.J.) .— The Bergman kernel function: Explicit formulas and zeros, prepint.
- [4] Boas ( H.P.), Straube ( E.J.) and Yu ( J.) .— Boundary limits of the Bergman kernel and metric, Michigan Math. J.42 (1995), pp. 449-461. Zbl0853.32028MR1357618
- [5] Boichu ( D.) and Cœuré ( G.) .— Sur le noyau de Bergman des domaines de Reinhardt, Invent. Math.72 (1983), pp. 131-152. Zbl0489.32017MR696692
- [6] Bonami ( A.) and Lohoué ( N.) .- Projecteurs de Bergman et Szegö pour une classe de domaines faiblement pseudo-convexes et estimation Lp, Compositio Math.46, n° 2 (1982), pp. 159-226. Zbl0538.32005MR659922
- [7] Boutet De Monvel ( L.) and Sjöstrand ( J.) .— Sur la singularité des noyaux de Bergman et de Szegö, Soc. Math. de France Astérique34-35 (1976), pp. 123-164. Zbl0344.32010MR590106
- [8] Catlin ( D.) .— Estimates of invariant metric on pseudoconvex domains of dimension two, Math. Z.200 (1989), pp. 429-266. Zbl0661.32030MR978601
- [9] Chalmers ( B.L.) . — On boundary behavior of the Bergman kernel function and related domain functionals, Pacific J. Math.29 (1969), pp. 243-250. Zbl0183.08703MR247133
- [10] Cho ( S.) . — Boundary behavior of the Bergman kernel function on some pseudoconvex domains in Cn, Trans. of A.M.S.345 (1994), pp. 803-817. Zbl0813.32023MR1254189
- [11] D'Angelo ( J. P.) .— A Note on the Bergman Kernel, Duke Math. J.45 (1978), pp. 259-265. Zbl0384.32006MR473231
- [12] D'Angelo ( J.P.) .— Real hypersurfaces, orders of contact, and applications, Ann. of Math.115 (1982), pp. 615-637. Zbl0488.32008MR657241
- [13] D'Angelo ( J.P.) .— An explicit computation of the Bergman kernel function, J. Geom. Analysis4 (1994), pp. 23-34. Zbl0794.32021MR1274136
- [14] Diederich ( K.) .— Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann.187 (1970), pp. 9-36. Zbl0184.31302MR262543
- [15] Diederich ( K.) .— Ueber die 1. und 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten, Math. Ann.203 (1973), pp. 129-170. Zbl0253.32011MR328130
- [16] Diederich ( K.) and Herbort ( G.) .- Geometric and analytic boundary invariants. Comparison results, J. Geom. Analysis3 (1993), pp. 237-267. Zbl0786.32016MR1225297
- [17] Diederich ( K.) and Herbort ( G.) .- Pseudoconvex domains of semiregular type, Contribution to Complex Analysis and Analytic Geometry, Aspects of Mathematics E26, Vieweg 1994. Zbl0845.32019MR1319347
- [18] Diederich ( K.) and Herbort ( G.) .— An alternative proof of a theorem of Boas—Straube—Yu, Complex Analysis and Geometry, PitmanResearch notes in Mathematics Series, 366 (1997), pp. 112-118. Zbl0889.32024MR1477443
- [19] Diederich ( K.), Herbort ( G.) and Ohsawa ( T.) .— The Bergman kernel on uniformy extendable pseudoconvex domains, Math. Ann.273 (1986), pp. 471-478. Zbl0582.32028MR824434
- [20] Erdélyi ( A.) .— Asymptotic expansions, Dover, New York (1956). Zbl0070.29002MR78494
- [21] Fefferman ( C.) . - The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math.26 (1974), pp. 1-65. Zbl0289.32012MR350069
- [22] Francsics ( G.) and Hanges ( N.) .— Explicit formulas for the Szegö kernel on certain weakly pseudoconvex domains, Proc. A.M.S.123 (1995), pp. 3161-3168. Zbl0848.32018MR1301494
- [23] Francsics ( G.) and Hanges ( N.) .— The Bergman kernel of complex ovals and multivariable hypergeometric functions, to appear in J. Funct. Analysis. Zbl0871.32016MR1423042
- [24] Gebelt ( N.W.) .— The Bergman kernel on certain weakly pseudoconvex domains, Math. Z.220 (1995), pp. 1-9. Zbl0826.32017MR1347154
- [25] Gong ( S.) and Zheng ( X.) .— The Bergman kernel function of some Reinhardt domains, Trans. of A.M.S.348 (1996), pp. 1771-1803. Zbl0865.32017MR1329534
- [26] Greiner ( P.C.) and Stein ( E.M.) .— On the solvability of some differential operators of □b, Proc. Internat. Conf. (Cortona, Italy, 1976-1977), Scuola Norm. Sup. Pisa (1978), pp. 106-165. Zbl0434.35007MR681306
- [27] Haslinger ( F.) .— Szegö kernels of certain unbounded domains in C2, Rev. Roumaine Math. Pures Appl.39 (1994), pp. 939-950. Zbl0865.32002MR1406110
- [28] Haslinger ( F.) . — Singularities of the Szegö kernels for certain weakly pseudoconvex domains in C2, J. Funct. Analysis129 (1995), pp. 406-427. Zbl0853.32023MR1327185
- [29] Herbort ( G.) .— Logarithmic growth of the Bergman kernel for weakly pseudoconvex domains in C3 of finite type, Manuscripta Math.45 (1983), pp. 69-76. Zbl0559.32006MR722923
- [30] Herbort ( G.) . - The growth of the Bergman kernel on pseudoconvex domains of homogeoneous finite diagonal type, Nagoya Math. J.126 (1992), pp. 1-24. Zbl0782.32019MR1171592
- [31] Herbort ( G.) .— On the invariant differential metrics near pseudoconvex boundary points where the Levi form has corank one, Nagoya Math. J.130 (1993), pp. 25-54. Zbl0773.32015MR1223728
- [32] Hörmander ( L.) .— L2 estimates and existance theorems for the ∂-operator, Acta Math.113 (1965), pp. 89-152. Zbl0158.11002MR179443
- [33] Ise ( M.) .— On Thullen domains and Hirzebruch manifolds I, J. Math. Soc. Japan26 (1974), pp. 508-522. Zbl0282.32016MR409910
- [34] Kamimoto ( J.) .— Singularities of the Bergman kernel for certain weakly pseudoconvex domains, to appear in the Journal of Math. Sci. the Univ. of Tokyo. Zbl0911.32036MR1617073
- [35] Kamimoto ( J.) .— On the singularities of non-analytic Szegö kernels, preprint. Zbl0939.32002MR1683305
- [36] Kamimoto ( J.) .— On an integral of Hardy and Littlewood, to appear in Kyushu J. of Math. Zbl0902.30022MR1609028
- [37] Kamimoto ( J.) .— The Bergman kernel on decoupled pseudoconvex domains, to appear in Proc. of I.S.A.A.C. Congress, Reproducing kernels and their applications, Kluwer Academic Publishers. MR1789756
- [38] Kohn ( J.J.) .— Boundary behavior of the ∂ on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom.6 (1972), pp. 523-542. Zbl0256.35060MR322365
- [39] Kohn ( J.J.) .- A survey of the ∂-Neumann problem, Proc. Symp. Pure Math.41 (1984), pp. 137-145. Zbl0535.32010MR740877
- [40] Korányi ( A.) . — The Bergman kernel function for tubes over convex cones, Pacific J. Math.12 (1962), pp. 1355-1359. Zbl0114.04002MR151639
- [41] Krantz ( S.G.) .— Geometric Analysis and Function Spaces, C.B.M.S., Amer. Math. Soc.81. Zbl0783.32001MR1228447
- [42] Krantz ( S.G.) .— Fatou theorems on domains in Cn, Bull. A.M.S.16 (1987), pp. 93-96. Zbl0614.32007MR866022
- [43] Krantz ( S.G.) .— Invariant metrics and the boundary behavior of holomorphic functions on domains in Cn, J. Geom. Analysis1 (1991), pp. 71-97. Zbl0728.32002MR1113372
- [44] Majima ( H.) .- Asymptotic Analysis for Integrable Connections with Irregular Singular Points, Lec. Notes in Math., Springer1075 (1984). Zbl0546.58003MR757897
- [45] Mcneal ( J.D.) .— Local geometry of decoupled pseudoconvex domains, Proceedings in honor of Hans Grauert, Aspekte de Mathematik, Vieweg, Berlin (1990), pp. 223-230. Zbl0747.32019MR1122183
- [46] Mcneal ( J.D.) .— Estimates on the Bergman kernels of convex domains, Adv. Math.109 (1994), pp. 108-139. Zbl0816.32018MR1302759
- [47] Mcneal ( J.D.) .— On large value of L2 Holomorphic functions, Math. Res. Letters3 (1996), pp. 247-259. Zbl0865.32009
- [48] Nagel ( A.) . - Vector fields and nonisotropic metrics, Beijing Lectures in Harmonic Analysis (E. M. Stein, ed.), Ann. Math. Studies112, Princeton University Press, Princeton, NXJ, 1986, pp. 241-306. Zbl0607.35011MR864374
- [49] Nagel ( A.), Stein ( E.M.) and Wainger ( S.) .— Boundary behaviorof functions holomorphic in domains of finite type, Natl. Acad. Sci. USA78 (1981), pp. 6596-6599. Zbl0517.32002MR634936
- [50] Nagel ( A.), Stein ( E.M.) and Wainger ( S.) .— Ball and metrics defined by vector fields I: Basic properties, Acta Math.155 (1985), pp. 103-147. Zbl0578.32044MR793239
- [51] Nakazawa ( N.) .— Asymptotic expansion of the Bergman kernel for strictly pseudoconvex complete Reinhardt domains in C2, Osaka J. Math.31 (1994), pp. 291-329. Zbl0818.32001MR1296841
- [52] Ohsawa ( T.) .— Boundary behavior of the Bergman kernel function on pseudoconvex domains, Publ. R.I.M.S., Kyoto Univ.20 (1984), pp. 897-902. Zbl0569.32013MR764336
- [53] Ohsawa ( T.) .— On the extension of L2 holomorphic functions III: negligible weights, Math. Z.219 (1995), pp. 215-225. Zbl0823.32006MR1337216
- [54] Saitoh ( S.) .- Fourier-Laplace transforms and the Bergman spaces, Proc. of A.M.S.102 (1988), pp. 985-992. Zbl0658.42015MR934879
- [55] Sibuya ( Y.) . - Perturbation of linear ordinary differential equations at irregular singular points, Funkt. Ekv.11 (1968), pp. 235-246. Zbl0228.34036MR243171
- [56] Yu ( J.) .— Peak functions on weakly pseudoconvex domains, Indiana Univ. Math. J.43 (1994), pp. 1271-1295. Zbl0828.32003MR1322619
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.