Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in 𝐂 2

Joe Kamimoto

Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)

  • Volume: 7, Issue: 1, page 51-85
  • ISSN: 0240-2963

How to cite

top

Kamimoto, Joe. "Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in ${\bf C}^2$." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.1 (1998): 51-85. <http://eudml.org/doc/73445>.

@article{Kamimoto1998,
author = {Kamimoto, Joe},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Bergman kernel; Szegő kernel; weakly pseudoconvex domain; tube domain; asymptotic expansion},
language = {eng},
number = {1},
pages = {51-85},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in $\{\bf C\}^2$},
url = {http://eudml.org/doc/73445},
volume = {7},
year = {1998},
}

TY - JOUR
AU - Kamimoto, Joe
TI - Asymptotic expansion of the Bergman kernel for weakly pseudoconvex tube domains in ${\bf C}^2$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 1
SP - 51
EP - 85
LA - eng
KW - Bergman kernel; Szegő kernel; weakly pseudoconvex domain; tube domain; asymptotic expansion
UR - http://eudml.org/doc/73445
ER -

References

top
  1. [1] Aladro ( G.) .- The compatibly of the Kobayashi approach region and the admissible approach region, Illinois J. Math.33 (1989), pp. 27-41 . Zbl0647.32023MR974010
  2. [2] Bergman ( S.) .- Zur Theorie von pseudokonformen Abbildungen, Math. Sbornik. Akad. Nauk SSSR (1936), pp. 79-96. Zbl0014.02603JFM62.0400.02
  3. [3] Boas ( H.P.), Fu ( S.) and Straube ( E.J.) .— The Bergman kernel function: Explicit formulas and zeros, prepint. 
  4. [4] Boas ( H.P.), Straube ( E.J.) and Yu ( J.) .— Boundary limits of the Bergman kernel and metric, Michigan Math. J.42 (1995), pp. 449-461. Zbl0853.32028MR1357618
  5. [5] Boichu ( D.) and Cœuré ( G.) .— Sur le noyau de Bergman des domaines de Reinhardt, Invent. Math.72 (1983), pp. 131-152. Zbl0489.32017MR696692
  6. [6] Bonami ( A.) and Lohoué ( N.) .- Projecteurs de Bergman et Szegö pour une classe de domaines faiblement pseudo-convexes et estimation Lp, Compositio Math.46, n° 2 (1982), pp. 159-226. Zbl0538.32005MR659922
  7. [7] Boutet De Monvel ( L.) and Sjöstrand ( J.) .— Sur la singularité des noyaux de Bergman et de Szegö, Soc. Math. de France Astérique34-35 (1976), pp. 123-164. Zbl0344.32010MR590106
  8. [8] Catlin ( D.) .— Estimates of invariant metric on pseudoconvex domains of dimension two, Math. Z.200 (1989), pp. 429-266. Zbl0661.32030MR978601
  9. [9] Chalmers ( B.L.) . — On boundary behavior of the Bergman kernel function and related domain functionals, Pacific J. Math.29 (1969), pp. 243-250. Zbl0183.08703MR247133
  10. [10] Cho ( S.) . — Boundary behavior of the Bergman kernel function on some pseudoconvex domains in Cn, Trans. of A.M.S.345 (1994), pp. 803-817. Zbl0813.32023MR1254189
  11. [11] D'Angelo ( J. P.) .— A Note on the Bergman Kernel, Duke Math. J.45 (1978), pp. 259-265. Zbl0384.32006MR473231
  12. [12] D'Angelo ( J.P.) .— Real hypersurfaces, orders of contact, and applications, Ann. of Math.115 (1982), pp. 615-637. Zbl0488.32008MR657241
  13. [13] D'Angelo ( J.P.) .— An explicit computation of the Bergman kernel function, J. Geom. Analysis4 (1994), pp. 23-34. Zbl0794.32021MR1274136
  14. [14] Diederich ( K.) .— Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann.187 (1970), pp. 9-36. Zbl0184.31302MR262543
  15. [15] Diederich ( K.) .— Ueber die 1. und 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten, Math. Ann.203 (1973), pp. 129-170. Zbl0253.32011MR328130
  16. [16] Diederich ( K.) and Herbort ( G.) .- Geometric and analytic boundary invariants. Comparison results, J. Geom. Analysis3 (1993), pp. 237-267. Zbl0786.32016MR1225297
  17. [17] Diederich ( K.) and Herbort ( G.) .- Pseudoconvex domains of semiregular type, Contribution to Complex Analysis and Analytic Geometry, Aspects of Mathematics E26, Vieweg 1994. Zbl0845.32019MR1319347
  18. [18] Diederich ( K.) and Herbort ( G.) .— An alternative proof of a theorem of Boas—Straube—Yu, Complex Analysis and Geometry, PitmanResearch notes in Mathematics Series, 366 (1997), pp. 112-118. Zbl0889.32024MR1477443
  19. [19] Diederich ( K.), Herbort ( G.) and Ohsawa ( T.) .— The Bergman kernel on uniformy extendable pseudoconvex domains, Math. Ann.273 (1986), pp. 471-478. Zbl0582.32028MR824434
  20. [20] Erdélyi ( A.) .— Asymptotic expansions, Dover, New York (1956). Zbl0070.29002MR78494
  21. [21] Fefferman ( C.) . - The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math.26 (1974), pp. 1-65. Zbl0289.32012MR350069
  22. [22] Francsics ( G.) and Hanges ( N.) .— Explicit formulas for the Szegö kernel on certain weakly pseudoconvex domains, Proc. A.M.S.123 (1995), pp. 3161-3168. Zbl0848.32018MR1301494
  23. [23] Francsics ( G.) and Hanges ( N.) .— The Bergman kernel of complex ovals and multivariable hypergeometric functions, to appear in J. Funct. Analysis. Zbl0871.32016MR1423042
  24. [24] Gebelt ( N.W.) .— The Bergman kernel on certain weakly pseudoconvex domains, Math. Z.220 (1995), pp. 1-9. Zbl0826.32017MR1347154
  25. [25] Gong ( S.) and Zheng ( X.) .— The Bergman kernel function of some Reinhardt domains, Trans. of A.M.S.348 (1996), pp. 1771-1803. Zbl0865.32017MR1329534
  26. [26] Greiner ( P.C.) and Stein ( E.M.) .— On the solvability of some differential operators of □b, Proc. Internat. Conf. (Cortona, Italy, 1976-1977), Scuola Norm. Sup. Pisa (1978), pp. 106-165. Zbl0434.35007MR681306
  27. [27] Haslinger ( F.) .— Szegö kernels of certain unbounded domains in C2, Rev. Roumaine Math. Pures Appl.39 (1994), pp. 939-950. Zbl0865.32002MR1406110
  28. [28] Haslinger ( F.) . — Singularities of the Szegö kernels for certain weakly pseudoconvex domains in C2, J. Funct. Analysis129 (1995), pp. 406-427. Zbl0853.32023MR1327185
  29. [29] Herbort ( G.) .— Logarithmic growth of the Bergman kernel for weakly pseudoconvex domains in C3 of finite type, Manuscripta Math.45 (1983), pp. 69-76. Zbl0559.32006MR722923
  30. [30] Herbort ( G.) . - The growth of the Bergman kernel on pseudoconvex domains of homogeoneous finite diagonal type, Nagoya Math. J.126 (1992), pp. 1-24. Zbl0782.32019MR1171592
  31. [31] Herbort ( G.) .— On the invariant differential metrics near pseudoconvex boundary points where the Levi form has corank one, Nagoya Math. J.130 (1993), pp. 25-54. Zbl0773.32015MR1223728
  32. [32] Hörmander ( L.) .— L2 estimates and existance theorems for the ∂-operator, Acta Math.113 (1965), pp. 89-152. Zbl0158.11002MR179443
  33. [33] Ise ( M.) .— On Thullen domains and Hirzebruch manifolds I, J. Math. Soc. Japan26 (1974), pp. 508-522. Zbl0282.32016MR409910
  34. [34] Kamimoto ( J.) .— Singularities of the Bergman kernel for certain weakly pseudoconvex domains, to appear in the Journal of Math. Sci. the Univ. of Tokyo. Zbl0911.32036MR1617073
  35. [35] Kamimoto ( J.) .— On the singularities of non-analytic Szegö kernels, preprint. Zbl0939.32002MR1683305
  36. [36] Kamimoto ( J.) .— On an integral of Hardy and Littlewood, to appear in Kyushu J. of Math. Zbl0902.30022MR1609028
  37. [37] Kamimoto ( J.) .— The Bergman kernel on decoupled pseudoconvex domains, to appear in Proc. of I.S.A.A.C. Congress, Reproducing kernels and their applications, Kluwer Academic Publishers. MR1789756
  38. [38] Kohn ( J.J.) .— Boundary behavior of the ∂ on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom.6 (1972), pp. 523-542. Zbl0256.35060MR322365
  39. [39] Kohn ( J.J.) .- A survey of the ∂-Neumann problem, Proc. Symp. Pure Math.41 (1984), pp. 137-145. Zbl0535.32010MR740877
  40. [40] Korányi ( A.) . — The Bergman kernel function for tubes over convex cones, Pacific J. Math.12 (1962), pp. 1355-1359. Zbl0114.04002MR151639
  41. [41] Krantz ( S.G.) .— Geometric Analysis and Function Spaces, C.B.M.S., Amer. Math. Soc.81. Zbl0783.32001MR1228447
  42. [42] Krantz ( S.G.) .— Fatou theorems on domains in Cn, Bull. A.M.S.16 (1987), pp. 93-96. Zbl0614.32007MR866022
  43. [43] Krantz ( S.G.) .— Invariant metrics and the boundary behavior of holomorphic functions on domains in Cn, J. Geom. Analysis1 (1991), pp. 71-97. Zbl0728.32002MR1113372
  44. [44] Majima ( H.) .- Asymptotic Analysis for Integrable Connections with Irregular Singular Points, Lec. Notes in Math., Springer1075 (1984). Zbl0546.58003MR757897
  45. [45] Mcneal ( J.D.) .— Local geometry of decoupled pseudoconvex domains, Proceedings in honor of Hans Grauert, Aspekte de Mathematik, Vieweg, Berlin (1990), pp. 223-230. Zbl0747.32019MR1122183
  46. [46] Mcneal ( J.D.) .— Estimates on the Bergman kernels of convex domains, Adv. Math.109 (1994), pp. 108-139. Zbl0816.32018MR1302759
  47. [47] Mcneal ( J.D.) .— On large value of L2 Holomorphic functions, Math. Res. Letters3 (1996), pp. 247-259. Zbl0865.32009
  48. [48] Nagel ( A.) . - Vector fields and nonisotropic metrics, Beijing Lectures in Harmonic Analysis (E. M. Stein, ed.), Ann. Math. Studies112, Princeton University Press, Princeton, NXJ, 1986, pp. 241-306. Zbl0607.35011MR864374
  49. [49] Nagel ( A.), Stein ( E.M.) and Wainger ( S.) .— Boundary behaviorof functions holomorphic in domains of finite type, Natl. Acad. Sci. USA78 (1981), pp. 6596-6599. Zbl0517.32002MR634936
  50. [50] Nagel ( A.), Stein ( E.M.) and Wainger ( S.) .— Ball and metrics defined by vector fields I: Basic properties, Acta Math.155 (1985), pp. 103-147. Zbl0578.32044MR793239
  51. [51] Nakazawa ( N.) .— Asymptotic expansion of the Bergman kernel for strictly pseudoconvex complete Reinhardt domains in C2, Osaka J. Math.31 (1994), pp. 291-329. Zbl0818.32001MR1296841
  52. [52] Ohsawa ( T.) .— Boundary behavior of the Bergman kernel function on pseudoconvex domains, Publ. R.I.M.S., Kyoto Univ.20 (1984), pp. 897-902. Zbl0569.32013MR764336
  53. [53] Ohsawa ( T.) .— On the extension of L2 holomorphic functions III: negligible weights, Math. Z.219 (1995), pp. 215-225. Zbl0823.32006MR1337216
  54. [54] Saitoh ( S.) .- Fourier-Laplace transforms and the Bergman spaces, Proc. of A.M.S.102 (1988), pp. 985-992. Zbl0658.42015MR934879
  55. [55] Sibuya ( Y.) . - Perturbation of linear ordinary differential equations at irregular singular points, Funkt. Ekv.11 (1968), pp. 235-246. Zbl0228.34036MR243171
  56. [56] Yu ( J.) .— Peak functions on weakly pseudoconvex domains, Indiana Univ. Math. J.43 (1994), pp. 1271-1295. Zbl0828.32003MR1322619

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.