Special directions on contact metric manifolds of negative ξ -sectional curvature

David E. Blair

Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)

  • Volume: 7, Issue: 3, page 365-378
  • ISSN: 0240-2963

How to cite

top

Blair, David E.. "Special directions on contact metric manifolds of negative $\xi $-sectional curvature." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.3 (1998): 365-378. <http://eudml.org/doc/73457>.

@article{Blair1998,
author = {Blair, David E.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {conformally Anosov; special directions; contact subbundle; contact metric manifold; negative sectional curvature; Anosov flow},
language = {eng},
number = {3},
pages = {365-378},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Special directions on contact metric manifolds of negative $\xi $-sectional curvature},
url = {http://eudml.org/doc/73457},
volume = {7},
year = {1998},
}

TY - JOUR
AU - Blair, David E.
TI - Special directions on contact metric manifolds of negative $\xi $-sectional curvature
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 3
SP - 365
EP - 378
LA - eng
KW - conformally Anosov; special directions; contact subbundle; contact metric manifold; negative sectional curvature; Anosov flow
UR - http://eudml.org/doc/73457
ER -

References

top
  1. [1] Anosov ( D.V.) .- Geodesic Flows on closed Riemann Manifolds with Negative Curvature, Proc. Steklov Inst. Math.90 (1967) (Amer. Math. Soc. translation, 1969). Zbl0176.19101MR242194
  2. [2] Auslander ( L.), Green ( L.) and Hahn ( F.) .— Flows on Homogeneous Spaces, Annals of Math. Studies53, Princeton, 1963. Zbl0106.36802
  3. [3] Benoist ( Y.), Foulon ( P.) and Labourie ( F.) .- Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc.5 (1992), pp. 33-74. Zbl0759.58035MR1124979
  4. [4] Blair ( D.E.) .— Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., Springer-Verlag, Berlin509 (1976). Zbl0319.53026MR467588
  5. [5] Blair ( D.E.) .- Rotational behavior of contact structures on 3-dimensional Lie Groups, Geometry and Topology of submanifoldsV (1993), pp. 41-53. Zbl0857.53028MR1339963
  6. [6] Blair ( D.E.) .- On the class of contact metric manifolds with a 3-τ-structure, to appear. MR1666966
  7. [7] Blair ( D.E.) and Chen ( H.) .— A classification of 3-dimensional contact metric manifolds with Q⊘ = ⊘Q, II, Bull. Inst. Math. Acad. Sinica20 (1992), pp. 379-383. Zbl0767.53023MR1205662
  8. [8] Blair ( D.E.), Koufogiorgos ( T.) and Sharma ( R.) .— A classification of 3-dimensional contact metric manifolds with Q⊘ = ⊘Q, Kodai Math. J.13 (1990), pp. 391-401. Zbl0716.53041MR1078554
  9. [9] Ghys ( E.) . - Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Scient. École Norm. Sup.20 (1987), pp. 251-270. Zbl0663.58025MR911758
  10. [10] Gouli-Andreou ( F.) and Xenos ( Ph J.) .— On 3-dimensional contact metric manifolds with ∇ξτ = 0, J. of Geom., to appear. Zbl0918.53014MR1631498
  11. [11] Milnor ( J.) . — Curvature of left invariant metrics on Lie groups, Adv. in Math.21 (1976), pp. 293-329. Zbl0341.53030MR425012
  12. [12] Mitsumatsu ( Y.) .— Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier45 (1995), pp. 1407-1421. Zbl0834.53031MR1370752
  13. [13] Perrone ( D.) . - Torsion and critical metrics on contact three-manifolds, Kodai Math. J.13 (1990), pp. 88-100. Zbl0709.53034MR1047598
  14. [14] Perrone ( D.) .- Tangent sphere bundles satisfying ∇ξτ = 0, J. of Geom.49 (1994), pp. 178-188. Zbl0794.53030MR1261117
  15. [15] Walters ( P.) . — Ergodic Theory-Introductory Lectures, Lecture Notes in Math., Springer-Verlag, Berlin, 458 (1975). Zbl0299.28012MR480949
  16. [16] Weinstein ( A.) .— On the hypothesis of Rabinowitz' periodic orbit theorem, J. Differential Equations, 33 (1978), pp. 353-358. Zbl0388.58020MR543704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.