Special directions on contact metric manifolds of negative -sectional curvature
Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)
- Volume: 7, Issue: 3, page 365-378
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBlair, David E.. "Special directions on contact metric manifolds of negative $\xi $-sectional curvature." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.3 (1998): 365-378. <http://eudml.org/doc/73457>.
@article{Blair1998,
author = {Blair, David E.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {conformally Anosov; special directions; contact subbundle; contact metric manifold; negative sectional curvature; Anosov flow},
language = {eng},
number = {3},
pages = {365-378},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Special directions on contact metric manifolds of negative $\xi $-sectional curvature},
url = {http://eudml.org/doc/73457},
volume = {7},
year = {1998},
}
TY - JOUR
AU - Blair, David E.
TI - Special directions on contact metric manifolds of negative $\xi $-sectional curvature
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 3
SP - 365
EP - 378
LA - eng
KW - conformally Anosov; special directions; contact subbundle; contact metric manifold; negative sectional curvature; Anosov flow
UR - http://eudml.org/doc/73457
ER -
References
top- [1] Anosov ( D.V.) .- Geodesic Flows on closed Riemann Manifolds with Negative Curvature, Proc. Steklov Inst. Math.90 (1967) (Amer. Math. Soc. translation, 1969). Zbl0176.19101MR242194
- [2] Auslander ( L.), Green ( L.) and Hahn ( F.) .— Flows on Homogeneous Spaces, Annals of Math. Studies53, Princeton, 1963. Zbl0106.36802
- [3] Benoist ( Y.), Foulon ( P.) and Labourie ( F.) .- Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc.5 (1992), pp. 33-74. Zbl0759.58035MR1124979
- [4] Blair ( D.E.) .— Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., Springer-Verlag, Berlin509 (1976). Zbl0319.53026MR467588
- [5] Blair ( D.E.) .- Rotational behavior of contact structures on 3-dimensional Lie Groups, Geometry and Topology of submanifoldsV (1993), pp. 41-53. Zbl0857.53028MR1339963
- [6] Blair ( D.E.) .- On the class of contact metric manifolds with a 3-τ-structure, to appear. MR1666966
- [7] Blair ( D.E.) and Chen ( H.) .— A classification of 3-dimensional contact metric manifolds with Q⊘ = ⊘Q, II, Bull. Inst. Math. Acad. Sinica20 (1992), pp. 379-383. Zbl0767.53023MR1205662
- [8] Blair ( D.E.), Koufogiorgos ( T.) and Sharma ( R.) .— A classification of 3-dimensional contact metric manifolds with Q⊘ = ⊘Q, Kodai Math. J.13 (1990), pp. 391-401. Zbl0716.53041MR1078554
- [9] Ghys ( E.) . - Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Scient. École Norm. Sup.20 (1987), pp. 251-270. Zbl0663.58025MR911758
- [10] Gouli-Andreou ( F.) and Xenos ( Ph J.) .— On 3-dimensional contact metric manifolds with ∇ξτ = 0, J. of Geom., to appear. Zbl0918.53014MR1631498
- [11] Milnor ( J.) . — Curvature of left invariant metrics on Lie groups, Adv. in Math.21 (1976), pp. 293-329. Zbl0341.53030MR425012
- [12] Mitsumatsu ( Y.) .— Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier45 (1995), pp. 1407-1421. Zbl0834.53031MR1370752
- [13] Perrone ( D.) . - Torsion and critical metrics on contact three-manifolds, Kodai Math. J.13 (1990), pp. 88-100. Zbl0709.53034MR1047598
- [14] Perrone ( D.) .- Tangent sphere bundles satisfying ∇ξτ = 0, J. of Geom.49 (1994), pp. 178-188. Zbl0794.53030MR1261117
- [15] Walters ( P.) . — Ergodic Theory-Introductory Lectures, Lecture Notes in Math., Springer-Verlag, Berlin, 458 (1975). Zbl0299.28012MR480949
- [16] Weinstein ( A.) .— On the hypothesis of Rabinowitz' periodic orbit theorem, J. Differential Equations, 33 (1978), pp. 353-358. Zbl0388.58020MR543704
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.