Conjecture de Globevnik-Stout et théorème de Morera pour une chaîne holomorphe

Tien-Cuong Dinh

Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)

  • Volume: 8, Issue: 2, page 235-257
  • ISSN: 0240-2963

How to cite

top

Dinh, Tien-Cuong. "Conjecture de Globevnik-Stout et théorème de Morera pour une chaîne holomorphe." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.2 (1999): 235-257. <http://eudml.org/doc/73486>.

@article{Dinh1999,
author = {Dinh, Tien-Cuong},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {holomorphic extension; boundary problem; boundary Morera theorems; holomorphic chain; CR-functions},
language = {fre},
number = {2},
pages = {235-257},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Conjecture de Globevnik-Stout et théorème de Morera pour une chaîne holomorphe},
url = {http://eudml.org/doc/73486},
volume = {8},
year = {1999},
}

TY - JOUR
AU - Dinh, Tien-Cuong
TI - Conjecture de Globevnik-Stout et théorème de Morera pour une chaîne holomorphe
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 2
SP - 235
EP - 257
LA - fre
KW - holomorphic extension; boundary problem; boundary Morera theorems; holomorphic chain; CR-functions
UR - http://eudml.org/doc/73486
ER -

References

top
  1. [1] Agranovski ( M.L.), Semenov ( A.M.). — Boundary analogues of Hartog's theorem, Sibirian. Math. J., 32 (1991), pp. 168-170. Zbl0732.32006MR1112093
  2. [2] Dinh ( T.C.). — Enveloppe polynomiale d'un compact de longueur finie et chaînes holomorphes à bord rectifiable, Acta Mathematica, 180:1 (1998), pp. 31-67. Zbl0942.32008MR1618329
  3. [3] Dinh ( T.C.). — Orthogonal measures on the boundary of a Riemann surface and polynomial hull of compacts of finite length, Journal of Functional Analysis, 157 (1998), pp. 624-649. Zbl0951.32005MR1638265
  4. [4] Dinh ( T.C.). - Problème du bord dans l'espace projectif complexe, Ann. Inst. Fourier, 48:5 (1998), pp. 1483-1512. Zbl0916.32011MR1662263
  5. [5] Dinh ( T.C.). - Sur la caractérisation du bord d'une chaîne holomorphe dans l'espace projectif, à paraître dans Bull. S.M.F.. Zbl0991.32007MR1765552
  6. [6] Dolbeault ( P.) et Henkin ( G.). — Chaînes holomorphes de bord donné dans CPn, Bull. Soc. Math. de France, 125 (1997), pp. 383-445. Zbl0942.32007MR1605457
  7. [7] Federer ( F.). — Geometric Measure Theory, Grundlenhren der Math. Wiss, 285, Springer, Berlin-Heidelberg-New York, (1988). 
  8. [8] Globevnik ( J.), Stout ( E.L.). - Boundary Morera theorems for holomorphic functions of several complex variables, Duke Math. J., 64 (1991), pp. 571-615. Zbl0760.32002MR1141286
  9. [9] Globevnik ( J.), Stout ( E.L.). — Discs and the Morera propriety, Prépublication (1998). 
  10. [10] Harvey ( R.). - Holomorphic chains and their boundaries, Proc. Symp. Pure Math., 30, vol. 1 (1977), pp. 309-382. Zbl0374.32002MR447619
  11. [11] Harvey ( R.) and Lawson ( B.). - On boundaries of complex analytic varieties I, Ann. of Math., 102 (1975), pp. 233-290. Zbl0317.32017MR425173
  12. [12] Henkin ( G.). — The Abel-Radon transform and several complex variables, Ann. of Math. Stud., 7 (1995), pp. 223-275. Zbl0848.32012MR1369141
  13. [13] Kytmanov ( A.M.), Myslivets ( S.G.). — On a certain boundary analogue of the Morera theorem, Sibirian Math. J., 36 (1995), n° 6, pp. 1171-1174. Zbl0864.32008MR1375433
  14. [14] Rudin ( W.). — Function Theory in the Unit Ball of CN, Springer, New York, 1980. Zbl0495.32001MR601594
  15. [15] Stolzenberg ( G.). - Uniform approximation on smooth curves, Acta Math., 115 (1966), pp. 185-198. Zbl0143.30005MR192080
  16. [16] Stout ( E.L.). — The boundary values of holomorphic functions of several complex variables, Duke Math. J., 44 (1977), pp. 105-108. Zbl0355.32016MR437800
  17. [17] Wermer ( J.). — The hull of a curve in Cn, Ann. of Math., 68 (1958), pp. 550-561. Zbl0084.33402MR100102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.