Problème du bord dans l'espace projectif complexe
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 5, page 1483-1512
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. ALEXANDER, Polynomial approximation and hulls in sets of finite linear measure in ℂn, Amer. J. Math., 93 (1971), 65-74. Zbl0221.32011MR44 #1841
- [2] E. BISHOP, Subalgebras of functions on a Riemann surface, Pacific J. Math., 8 (1958), 29-50. Zbl0083.06201MR20 #3300
- [3] E. M. CHIRKA, Complex Analytic Sets, Kluwer Academic Publishers, 1986.
- [4] T. C. DINH, Chaînes holomorphes à bord rectifiable, C. R. Acad. Sci. Paris, 322, Série I (1996), 1135-1140. Zbl0865.32007MR97e:32007
- [5] T. C. DINH, Enveloppe polynomiale d'un compact de longueur finie et chaînes holomorphes à bord rectifiable, Acta Mathematica, 180-1 (1998), 31-67. Zbl0942.32008MR99f:32016
- [6] T. C. DINH, Orthogonal measures on the boundary of a Riemann surface and polynomial hull of compacts of finite length, J. Funct. Analysis, 157 (1998), 624-649. Zbl0951.32005MR99h:32013
- [7] P. DOLBEAULT et G. HENKIN, Surfaces de Riemann de bord donné dans ℂℙn, Aspects of Mathematics, 26, Vieweg (1994), 163-187. Zbl0821.32008MR96a:32020
- [8] P. DOLBEAULT et G. HENKIN, Chaînes holomorphes de bord donné dans ℂℙn, Bull. Soc. Math. de France, 125 (1997), 383-445. Zbl0942.32007MR98m:32014
- [9] P. DOLBEAULT et J. B. POLY, Variations sur le problème des bords dans ℂℙn, Prépublication, (1995).
- [10] F. FEDERER, Geometric Measure Theory, Grundlenhren der Math. Wiss, 285, Springer, Berlin-Heidelberg-New York, 1988. Zbl0176.00801
- [11] L. GRUMAN, The area of analytic varieties in ℂn, Math. Scand., 41 (1977), 365-379. Zbl0376.32008MR57 #16670
- [12] L. GRUMAN, La géométrie globale des ensembles analytiques dans ℂn, Séminaire Lelong-Skoda 1978/1979. Zbl0446.32007
- [13] R. HARVEY, Holomorphic chains and their boundaries, Proc. Symp. Pure Math., 30, vol. 1 (1977), 309-382. Zbl0374.32002MR56 #5929
- [14] R. HARVEY and B. LAWSON, On boundaries of complex analytic varieties I, Ann. of Math., 102 (1975), 233-290. Zbl0317.32017MR54 #13130
- [15] R. HARVEY and B. LAWSON, On boundaries of complex analytic varieties II, Ann. of Math., 106 (1977), 213-238. Zbl0361.32010MR58 #17186
- [16] R. HARVEY and B. SHIFFMANA characterization of holomorphic chains, Ann. of Math. (2), 99 (1974), 553-587. Zbl0287.32008MR50 #7572
- [17] G. HENKIN, The Abel-Radon transform and several complex variables, Ann. of Math. Stud., 7 (1995), 223-275. Zbl0848.32012MR96k:32014
- [18] J. KING, The currents defined by analytic varieties, Acta Math., 127 (1971), 185-220. Zbl0224.32008MR52 #14359
- [19] M. G. LAWRENCE, Polynomial hulls of rectifiable curves, Amer. J. Math., 117 (1995), 405-417. Zbl0827.32012MR96d:32012
- [20] M. G. LAWRENCE, Polynomial hulls of sets of finite length in strictly convex boundaries, Manuscript (1997).
- [21] R. E. MOLZON, B. SHIFFMAN and N. SIBONY, Average growth estimates for hyperplane sections of entire analytic sets, Math. Ann., 257 (1981), 43-59. Zbl0537.32009MR83g:32008
- [22] F. SARKIS, CR-meromorphic extension and the non-embedding of the Andreotti-Rossi CR structure in the projective space, Prépublication de Paris VI, 116 (1997). Zbl1110.32308
- [23] G. STOLZENBERG, Uniform approximation on smooth curves, Acta Math., 115 (1966), 185-198. Zbl0143.30005MR33 #307
- [24] J. WERMER, The hull of a curve in ℂn, Ann. of Math., 68 (1958), 550-561. Zbl0084.33402MR20 #6536
- [25] J. WERMER, Function rings and Riemann surfaces, Ann. of Math., 67 (1958), 45-71. Zbl0081.32902MR20 #109