Sur la caractérisation du bord d'une chaîne holomorphe dans l'espace projectif

Tien-Cuong Dinh

Bulletin de la Société Mathématique de France (1999)

  • Volume: 127, Issue: 4, page 519-539
  • ISSN: 0037-9484

How to cite

top

Dinh, Tien-Cuong. "Sur la caractérisation du bord d'une chaîne holomorphe dans l'espace projectif." Bulletin de la Société Mathématique de France 127.4 (1999): 519-539. <http://eudml.org/doc/87817>.

@article{Dinh1999,
author = {Dinh, Tien-Cuong},
journal = {Bulletin de la Société Mathématique de France},
keywords = {holomorphic chains; maximal complexity; Stein manifolds; rectifiability; moment conditions},
language = {fre},
number = {4},
pages = {519-539},
publisher = {Société mathématique de France},
title = {Sur la caractérisation du bord d'une chaîne holomorphe dans l'espace projectif},
url = {http://eudml.org/doc/87817},
volume = {127},
year = {1999},
}

TY - JOUR
AU - Dinh, Tien-Cuong
TI - Sur la caractérisation du bord d'une chaîne holomorphe dans l'espace projectif
JO - Bulletin de la Société Mathématique de France
PY - 1999
PB - Société mathématique de France
VL - 127
IS - 4
SP - 519
EP - 539
LA - fre
KW - holomorphic chains; maximal complexity; Stein manifolds; rectifiability; moment conditions
UR - http://eudml.org/doc/87817
ER -

References

top
  1. [1] ALEXANDER (H.). — Polynomial approximation and hulls in sets of finite linear measure in ℂn, Amer. J. Math., t. 93, 1971, p. 65-74. Zbl0221.32011MR44 #1841
  2. [2] ALEXANDER (H.). — Holomorphic chains and the support hypothesis conjecture, J. Amer. Math. Soc., t. 10, 1997, p. 123-138. Zbl0870.32003MR97g:32009
  3. [3] ALEXANDER (H.), WERMER (J.). — Linking numbers and boundaries of varieties, Preprint, 1998. 
  4. [4] BISHOP (E.). — Subalgebras of functions on a Riemann surface, Pacific J. Math., t. 8, 1958, p. 29-50. Zbl0083.06201MR20 #3300
  5. [5] DINH (T.-C.). — Enveloppe polynomiale d'un compact de longueur finie et chaînes holomorphes à bord rectifiable, Acta Math., t. 180-1, 1998, p. 31-67. Zbl0942.32008MR99f:32016
  6. [6] DINH (T.-C.). — Orthogonal measures on the boundary of a Riemann surface and polynomial hull of compacts of finite length, J. Funct. Analysis, t. 157, 1998, p. 624-649. Zbl0951.32005MR99h:32013
  7. [7] DINH (T.-C.). — Problème du bord dans l'espace projectif complexe, Ann. Inst. Fourier, t. 48-5, 1998, p. 1483-1512. Zbl0916.32011MR99m:32010
  8. [8] DINH (T.-C.). — Conjecture de Globevnik-Stout et théorème de Morera pour une chaîne holomorphe, à paraître dans les Annales de la Faculté des Sciences de Toulouse. Zbl0959.32020
  9. [9] DOLBEAULT (P.), HENKIN (G.). — Chaînes holomorphes de bord donné dans ℂℙn, Bull. Soc. Math. de France, t. 125, 1997, p. 383-445. Zbl0942.32007MR98m:32014
  10. [10] FABRE (B.). — Sur l'intersection d'une courbe algébrique avec des hypersurfaces algébriques, C. R. Acad. Sci. Paris, t. 322, 1996, p. 371-376. Zbl0866.32011MR97a:32008
  11. [11] GLOBEVNIK (J.), STOUT (E.L.). — Boundary Morera theorems for holomorphic functions of several complex variables, Duke Math. J., t. 64, 1991, p. 571-615. Zbl0760.32002MR93b:32018
  12. [12] GRAUERT (H.). — On the Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math., t. 68, 1958, p. 460-472. Zbl0108.07804MR20 #5299
  13. [13] HARVEY (R.), LAWSON (B.). — On boundaries of complex analytic varieties I, Ann. of Math., t. 102, 1975, p. 233-290. Zbl0317.32017MR54 #13130
  14. [14] HARVEY (R.), SHIFFMAN (B.). — A characterization of holomorphic chains, Ann. of Math. (2), t. 99, 1974, p. 553-587. Zbl0287.32008MR50 #7572
  15. [15] KING (J.). — The currents defined by analytic varieties, Acta Math., t. 127, 1971, p. 185-220. Zbl0224.32008MR52 #14359
  16. [16] LAWRENCE (M.G.). — Polynomial hulls of rectifiable curves, Amer. J. Math., t. 117, 1995, p. 405-417. Zbl0827.32012MR96d:32012
  17. [17] LAWRENCE (M.G.). — Polynomial hulls of sets of finite length in strictly convex boundaries, Manuscript. 
  18. [18] MIHALACHE (N.). — Voisinages de Stein pour les surfaces de Riemann avec bord immergées dans l'espace projectif, Bull. Sci. Math., t. 120, 1996, p. 397-404. Zbl0879.32014MR97h:32020
  19. [19] SHIFFMAN (B.). — Complete characterization of holomorphic chains of codimension one, Math. Ann., t. 274, 1986, p. 233-256. Zbl0572.32005MR87h:32022
  20. [20] STOLZENBERG (G.). — Uniform approximation on smooth curves, Acta Math., t. 115, 1966, p. 185-198. Zbl0143.30005MR33 #307
  21. [21] WERMER (J.). — The hull of a curve in ℂn, Ann. of Math., t. 68, 1958, p. 550-561. Zbl0084.33402MR20 #6536

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.