Lower semicontinuity of a class of multiple integrals below the growth exponent
Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)
- Volume: 10, Issue: 2, page 299-311
- ISSN: 0240-2963
Access Full Article
topHow to cite
topGiannetti, Flavia, and Verde, Anna. "Lower semicontinuity of a class of multiple integrals below the growth exponent." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (2001): 299-311. <http://eudml.org/doc/73548>.
@article{Giannetti2001,
author = {Giannetti, Flavia, Verde, Anna},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {lower semicontinuity; mulptiple integrals; integral functional},
language = {eng},
number = {2},
pages = {299-311},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Lower semicontinuity of a class of multiple integrals below the growth exponent},
url = {http://eudml.org/doc/73548},
volume = {10},
year = {2001},
}
TY - JOUR
AU - Giannetti, Flavia
AU - Verde, Anna
TI - Lower semicontinuity of a class of multiple integrals below the growth exponent
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 299
EP - 311
LA - eng
KW - lower semicontinuity; mulptiple integrals; integral functional
UR - http://eudml.org/doc/73548
ER -
References
top- [1] Acerbi ( E.), Dal Maso ( G.). - New lower semicontinuity results for polyconvex integrals, Calc. Var. Partial Differential Equations2 (1994), no.3, 329-371. Zbl0810.49014MR1385074
- [2] Acerbi ( E.), Fusco ( N.). - Semicontinuity problems in the Calculus of Variations, Arch. Rat. Mech. Anal.86 (1984), 125-145. Zbl0565.49010MR751305
- [3] Ball ( J.M.). - Convexity conditions and existence theorems in nonlinear elsticity, Arch. Rational Mech. Anal.63 (1977), 337-403. Zbl0368.73040MR475169
- [4] Ball ( J.M.), Murat ( F.). - W1,p quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.58 (1984), 225-253. Zbl0549.46019MR759098
- [5] Dacorogna ( B.). — Direct Methods in the Calculus of Variations, Springer Verlag, Berlin (1989). Zbl0703.49001MR990890
- [6] Dacorogna ( B.), Marcellini ( P.). - Semicontinuité pour des intégrandes polyconvexes sans continuité des déterminants, C.R. Acad. Sci.Paris, 311 (1990), 393-396. Zbl0723.49007MR1071650
- [7] Dal Maso ( G.), Sbordone ( C.). - Weak lower semicontinuity of polyconvex integrals : a borderline case, Math. Z.218 (1995), no.4, 603-609. Zbl0822.49010MR1326990
- [8] Ekeland ( I.), Temam ( R.). - Convex Analysis and Variational Problems, North-Holland, New York (1976). Zbl0322.90046MR463994
- [9] Evans ( L.C.), Gariepy ( R.F.). — Measure theory and fine properties of functions,Studies in Advanced Maths.CRC Press1992. Zbl0804.28001MR1158660
- [10] Fonseca ( I.), Müller ( S.). - A-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal.30 (1999), n.6, 1355-1390. Zbl0940.49014MR1718306
- [11] Fonseca ( I.), Malý ( J.). - Relaxation of multiple integrals below the growth exponents, Ann. Inst. H. Poincaré14, n.3 (1997), 309-338. Zbl0868.49011MR1450951
- [12] Fonseca ( I.), Marcellini ( P.). - Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geom. Anal.7 (1997), no.1, 57-81. Zbl0915.49011MR1630777
- [13] Fusco ( N.), Hutchinson ( J.E.). — A direct proof for lower semicontinuity of polyconvex functionals, Manu- scripta Math.87 (1995), 35-50. Zbl0874.49015MR1329439
- [14] Gangbo ( W.). - On the weak lower semicontinuity of energies with polyconvex integrandsJ. Math. Pures et Appl.73 (1994), 455-469. Zbl0829.49011MR1300984
- [15] Giannetti ( F.), Verde ( A.). - Variational Integrals for Elliptic Complexes, Studia Math.140 (2000), no.1, 79-98. Zbl0968.58019MR1763883
- [16] Iwaniec ( T.), Sbordone ( C.). - Quasiharmonic Fields, Ann. Inst. H. Poincaré Anal. Non Linéaire18, n. 5 (2001), 519-572. Zbl1068.30011MR1849688
- [17] Kristensen ( J.). - Finite Functionals and Young Measures Generated by Gradients of Sobolev Functions , Mat- Report 1994-34, Mathematical Institute, Technical University of Denmark, Lyngby, Denmark,1994.
- [18] Malý ( J.). — Weak lower semicontinuity of polyconvex integrands, Proc. Royal Soc. Edin.123A (1993), 681-691. Zbl0813.49017MR1237608
- [19] Marcellini ( P.). - On the definition and lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré (1986), 391-409. Zbl0609.49009MR868523
- [20] Meyers ( N.G.). - Quasiconvexity and the semicontinuity of multiple integrals of any order, Trans. Amer. Math. Soc.119 (1965), 125-149. Zbl0166.38501MR188838
- [21] Morrey ( C.B..). — Quasiconvexity and the semicontinuity of multiple integralsPacific J. Math.2 (1952), 25-53. Zbl0046.10803MR54865
- [22] Morrey ( C.B.). — Multiple integrals in the calculus of variationsDie Grund. der Math. Wiss.130, Springer Verlag, Heidelberg and New York, 1966. Zbl0142.38701MR202511
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.