Variational integrals for elliptic complexes

Flavia Giannetti; Anna Verde

Studia Mathematica (2000)

  • Volume: 140, Issue: 1, page 79-98
  • ISSN: 0039-3223

Abstract

top
We discuss variational integrals which are defined on differential forms associated with a given first order elliptic complex. This general framework provides us with better understanding of the concepts of convexity, even in the classical setting D ' ( n , ) D ' ( n , n ) c u r l D ' ( n , n × n )

How to cite

top

Giannetti, Flavia, and Verde, Anna. "Variational integrals for elliptic complexes." Studia Mathematica 140.1 (2000): 79-98. <http://eudml.org/doc/216757>.

@article{Giannetti2000,
abstract = {We discuss variational integrals which are defined on differential forms associated with a given first order elliptic complex. This general framework provides us with better understanding of the concepts of convexity, even in the classical setting $D^\{\prime \}(ℝ^n,ℝ) \{∇\over →\} D^\{\prime \}(ℝ^n,ℝ^n) \{\{curl\}\over \{→\}\} D^\{\prime \}(ℝ^n,ℝ^\{n×n\})$},
author = {Giannetti, Flavia, Verde, Anna},
journal = {Studia Mathematica},
keywords = {elliptic complexes; Hilbert transform; quasiharmonic fields},
language = {eng},
number = {1},
pages = {79-98},
title = {Variational integrals for elliptic complexes},
url = {http://eudml.org/doc/216757},
volume = {140},
year = {2000},
}

TY - JOUR
AU - Giannetti, Flavia
AU - Verde, Anna
TI - Variational integrals for elliptic complexes
JO - Studia Mathematica
PY - 2000
VL - 140
IS - 1
SP - 79
EP - 98
AB - We discuss variational integrals which are defined on differential forms associated with a given first order elliptic complex. This general framework provides us with better understanding of the concepts of convexity, even in the classical setting $D^{\prime }(ℝ^n,ℝ) {∇\over →} D^{\prime }(ℝ^n,ℝ^n) {{curl}\over {→}} D^{\prime }(ℝ^n,ℝ^{n×n})$
LA - eng
KW - elliptic complexes; Hilbert transform; quasiharmonic fields
UR - http://eudml.org/doc/216757
ER -

References

top
  1. [A] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60. Zbl0815.30015
  2. [BM-S] A. Baernstein and S. J. Montgomery-Smith, Some conjectures about integral means of ∂⨍ and ¯ , to appear. 
  3. [Bu] D. L. Burkholder, Sharp inequalities for martingales and stochastic integrals, Astérisque 157-158 (1988), 75-94. 
  4. [C] H. Cartan, Differential Forms, Hermann, Paris , 1967. Zbl0213.37001
  5. [CRW] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. Zbl0864.42009
  6. [CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 569-645. 
  7. [D] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. Zbl0703.49001
  8. [ET] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, New York, 1976. Zbl0322.90046
  9. [FM] I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal. 30 (1999), 1355-1390. Zbl0940.49014
  10. [GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. Zbl0361.35003
  11. [I] T. Iwaniec, Nonlinear Cauchy-Riemann operators in n , Proc. Amer. Math. Soc., to appear. Zbl1113.35068
  12. [IS1] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129-143. Zbl0766.46016
  13. [IS2] T. Iwaniec and C. Sbordone, Div-curl fields of finite distortion, C. R. Acad. Sci. Paris Sér. I 327 (1998), 729-734. Zbl0916.30015
  14. [IS3] T. Iwaniec and C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré, to appear. 
  15. [ISS] T. Iwaniec, C. Scott and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. 177 (1999), 37-115. Zbl0963.58003
  16. [IV1] T. Iwaniec and A. Verde, Note on the operator L ( ) = l o g | | , J. Funct. Anal. 169 (1999), 391-420. 
  17. [IV2] T. Iwaniec and A. Verde, A study of Jacobians in Hardy-Orlicz spaces, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 539-570. Zbl0954.46018
  18. [M] S. Müller, Higher integrability of determinants and weak convergence in L 1 , J. Reine Angew. Math. 412 (1990), 20-34. 
  19. [R] Yu. G. Reshetnyak, Stability theorems for mappings with bounded distortion, Siberian Math. J. 9 (1968), 499-512. Zbl0176.03503
  20. [Š] V. Šverák, Rank one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 185-189. Zbl0777.49015
  21. [St1] E. M. Stein, Note on the class L log L, Studia Math. 32 (1969), 305-310. Zbl0182.47803
  22. [St2] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, 1993. 
  23. [W] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318-344. Zbl0181.11501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.