Variational integrals for elliptic complexes
Studia Mathematica (2000)
- Volume: 140, Issue: 1, page 79-98
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGiannetti, Flavia, and Verde, Anna. "Variational integrals for elliptic complexes." Studia Mathematica 140.1 (2000): 79-98. <http://eudml.org/doc/216757>.
@article{Giannetti2000,
abstract = {We discuss variational integrals which are defined on differential forms associated with a given first order elliptic complex. This general framework provides us with better understanding of the concepts of convexity, even in the classical setting $D^\{\prime \}(ℝ^n,ℝ) \{∇\over →\} D^\{\prime \}(ℝ^n,ℝ^n) \{\{curl\}\over \{→\}\} D^\{\prime \}(ℝ^n,ℝ^\{n×n\})$},
author = {Giannetti, Flavia, Verde, Anna},
journal = {Studia Mathematica},
keywords = {elliptic complexes; Hilbert transform; quasiharmonic fields},
language = {eng},
number = {1},
pages = {79-98},
title = {Variational integrals for elliptic complexes},
url = {http://eudml.org/doc/216757},
volume = {140},
year = {2000},
}
TY - JOUR
AU - Giannetti, Flavia
AU - Verde, Anna
TI - Variational integrals for elliptic complexes
JO - Studia Mathematica
PY - 2000
VL - 140
IS - 1
SP - 79
EP - 98
AB - We discuss variational integrals which are defined on differential forms associated with a given first order elliptic complex. This general framework provides us with better understanding of the concepts of convexity, even in the classical setting $D^{\prime }(ℝ^n,ℝ) {∇\over →} D^{\prime }(ℝ^n,ℝ^n) {{curl}\over {→}} D^{\prime }(ℝ^n,ℝ^{n×n})$
LA - eng
KW - elliptic complexes; Hilbert transform; quasiharmonic fields
UR - http://eudml.org/doc/216757
ER -
References
top- [A] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), 37-60. Zbl0815.30015
- [BM-S] A. Baernstein and S. J. Montgomery-Smith, Some conjectures about integral means of ∂⨍ and , to appear.
- [Bu] D. L. Burkholder, Sharp inequalities for martingales and stochastic integrals, Astérisque 157-158 (1988), 75-94.
- [C] H. Cartan, Differential Forms, Hermann, Paris , 1967. Zbl0213.37001
- [CRW] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. Zbl0864.42009
- [CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 569-645.
- [D] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. Zbl0703.49001
- [ET] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, New York, 1976. Zbl0322.90046
- [FM] I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity and Young measures, SIAM J. Math. Anal. 30 (1999), 1355-1390. Zbl0940.49014
- [GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977. Zbl0361.35003
- [I] T. Iwaniec, Nonlinear Cauchy-Riemann operators in , Proc. Amer. Math. Soc., to appear. Zbl1113.35068
- [IS1] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129-143. Zbl0766.46016
- [IS2] T. Iwaniec and C. Sbordone, Div-curl fields of finite distortion, C. R. Acad. Sci. Paris Sér. I 327 (1998), 729-734. Zbl0916.30015
- [IS3] T. Iwaniec and C. Sbordone, Quasiharmonic fields, Ann. Inst. H. Poincaré, to appear.
- [ISS] T. Iwaniec, C. Scott and B. Stroffolini, Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. 177 (1999), 37-115. Zbl0963.58003
- [IV1] T. Iwaniec and A. Verde, Note on the operator , J. Funct. Anal. 169 (1999), 391-420.
- [IV2] T. Iwaniec and A. Verde, A study of Jacobians in Hardy-Orlicz spaces, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 539-570. Zbl0954.46018
- [M] S. Müller, Higher integrability of determinants and weak convergence in , J. Reine Angew. Math. 412 (1990), 20-34.
- [R] Yu. G. Reshetnyak, Stability theorems for mappings with bounded distortion, Siberian Math. J. 9 (1968), 499-512. Zbl0176.03503
- [Š] V. Šverák, Rank one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 185-189. Zbl0777.49015
- [St1] E. M. Stein, Note on the class L log L, Studia Math. 32 (1969), 305-310. Zbl0182.47803
- [St2] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, 1993.
- [W] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), 318-344. Zbl0181.11501
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.