The equivariant fundamental group, uniformization of real algebraic curves, and global complex analytic coordinates on Teichmüller spaces

Johannes Huisman

Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)

  • Volume: 10, Issue: 4, page 659-682
  • ISSN: 0240-2963

How to cite

top

Huisman, Johannes. "The equivariant fundamental group, uniformization of real algebraic curves, and global complex analytic coordinates on Teichmüller spaces." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.4 (2001): 659-682. <http://eudml.org/doc/73562>.

@article{Huisman2001,
author = {Huisman, Johannes},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {real algebraic curves; Teichmüller spaces; Kleinian groups},
language = {eng},
number = {4},
pages = {659-682},
publisher = {UNIVERSITE PAUL SABATIER},
title = {The equivariant fundamental group, uniformization of real algebraic curves, and global complex analytic coordinates on Teichmüller spaces},
url = {http://eudml.org/doc/73562},
volume = {10},
year = {2001},
}

TY - JOUR
AU - Huisman, Johannes
TI - The equivariant fundamental group, uniformization of real algebraic curves, and global complex analytic coordinates on Teichmüller spaces
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 4
SP - 659
EP - 682
LA - eng
KW - real algebraic curves; Teichmüller spaces; Kleinian groups
UR - http://eudml.org/doc/73562
ER -

References

top
  1. [1] Bers ( L.). - Simultaneous uniformization. Bull. Amer. Math. Soc.66 (1960), 94-97 Zbl0090.05101MR111834
  2. [2] Bers ( L.). - Correction to "Spaces of Riemann surfaces as bounded domains". Bull. Amer. Math. Soc.67 (1961), 465-466 Zbl0106.28501MR130972
  3. [3] Earle ( C.J.). - Moduli of surfaces with symmetries. Advances in the theory of Riemann surfaces. Ahlfors, L.V. et. al. (eds) Princeton University Press and University of Tokyo Press, 1971 MR296282
  4. [4] Earle ( C.J.). - Intrinsic coordinates on Teichmüller spaces. Proc. Amer. Math. Soc.83, N°3 (1981), 527-531 Zbl0478.32015MR627684
  5. [5] Farkas ( H.), Kra ( I.). - Riemann surfaces, 2nd ed. Grad. Texts Math.Springer Verlag, Berlin, 1992 Zbl0764.30001MR1139765
  6. [6] Greenberg ( M.J.), Harper ( J.R.). - Algebraic topology. Addison Wesley, 1981 
  7. [7] Haefliger ( A.), Quach Ngoc Du. - Appendice: une présentation du groupe fondamental d'une orbifold. In: Transversal structure of foliations. Astérisque116, (1984), 98-107 Zbl0556.57032MR755164
  8. [8] Huisman ( J.) Espaces des modules des courbes algébriques réelles. Habilitation à Diriger des Recherches, Université de Rennes 1, 1999 
  9. [9] Kra ( I.). - Deformation spaces. A crash course on Kleinian groups. L. Bers, I. Kra (eds). LNM400, Springer Verlag, Berlin, 1974, 48-70 Zbl0293.32021MR402122
  10. [10] Maskit ( B.). - Moduli of marked Riemann surfaces. Bull. Amer. Math. Soc.80 (1974), 773-777 Zbl0292.30016MR346149
  11. [11] Maskit ( B.). - Kleinian groups. Springer Verlag, Berlin, 1988 Zbl0627.30039MR959135
  12. [12] Nag ( S.). - The complex analytic theory of Teichmüller spaces. John Wiley & Sons, 1988 Zbl0667.30040
  13. [13] Seppälä ( M.). - Teichmüller spaces of Klein surfaces. Ann. Acad. Sci. Fen. Ser. A, I Math. Diss.15 (1978), 1-37 Zbl0407.32010MR503039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.