Optimal Lipschitz estimates for the ¯ equation on a class of convex domains

Viêt Anh Nguyên; El Hassan Youssfi

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 2, page 179-243
  • ISSN: 0240-2963

How to cite

top

Nguyên, Viêt Anh, and Youssfi, El Hassan. "Optimal Lipschitz estimates for the $\overline{\partial }$ equation on a class of convex domains." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.2 (2003): 179-243. <http://eudml.org/doc/73602>.

@article{Nguyên2003,
author = {Nguyên, Viêt Anh, Youssfi, El Hassan},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {-equation; Lipschitz estimates},
language = {eng},
number = {2},
pages = {179-243},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Optimal Lipschitz estimates for the $\overline\{\partial \}$ equation on a class of convex domains},
url = {http://eudml.org/doc/73602},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Nguyên, Viêt Anh
AU - Youssfi, El Hassan
TI - Optimal Lipschitz estimates for the $\overline{\partial }$ equation on a class of convex domains
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 2
SP - 179
EP - 243
LA - eng
KW - -equation; Lipschitz estimates
UR - http://eudml.org/doc/73602
ER -

References

top
  1. [1] Berndtsson ( B. ). — A formula for interpolation and division in Cn, Math. Ann.263, p. 399-418 (1983). Zbl0499.32013MR707239
  2. [2] Bonami ( A. ) and Charpentier ( P.). - Solutions de l'équation ∂ et zéros de la classe de Nevanlinna dans certains domaines faiblement pseudo-convexes , Ann. Inst. Fourier.32(4), p. 53-89 (1982). Zbl0493.32005MR694128
  3. [3] Charpentier ( P.). - Formules explicites pour les solutions minimales de l'équation ∂u = f dans la boule et dans le polydisque de Cn, Ann. Inst. Fourier.30(4), p. 121-154 (1980). Zbl0425.32009MR599627
  4. [4] Chen ( Z.) , Krantz ( S.G.) and Ma ( D.). — Optimal Lp estimates for the ∂ equation on complex ellipsoids in Cn, Manuscripta math.80, p. 131-149 (1993). Zbl0789.32011MR1233477
  5. [5] Cumenge ( A. ). — Estimées Lipschitz optimales dans les convexes de type fini, C. R. Acad. Sci. Paris325, p. 1077-1080 (1997). Zbl0904.32013MR1614008
  6. [6] Cumenge ( A. ).— Sharp estimates for ∂ on convex domains of finite type, Ark. Mat.39, p. 1-25 (2001). Zbl1028.35115MR1807801
  7. [7] Diederich ( K.), Fischer ( B.) and Fornæss ( J.E.). - Hõlder estimates on convex domains of finite type, Math. Z.232, p. 43-61 (1999). Zbl0932.32008
  8. [8] Fischer ( B. ) . - Lp estimates on convex domains of finite type, Math. Z.236, p. 401-418 (2001). Zbl0984.32022MR1815835
  9. [9] Greiner ( P. ) and Stein ( E.). - "Estimates for the ∂-Neumann problem", Mathematical Notes19, Princeton University Press, (1977 ). Zbl0354.35002MR499319
  10. [10] Hefer ( T. ).— Hõlder and LP estimates for ∂ on convex domains of finite type depending on Catlin's multitype, Math. Z.242, p. 367-398 (2002). Zbl1048.32024
  11. [11] Krantz ( S.G. ). — Optimal Lipschitz and LP regularity for the equation ∂u = f on strongly pseudo-convex domains, Math. Annalen.219, p. 233-260 (1976). Zbl0303.35059MR397020
  12. [12] Krantz ( S.G. ). — Estimates for integral kernels of mixed type, fractional integration operators, and optimal estimates for the ∂ operator, Manuscripta math. 30, p. 21-52 (1979). Zbl0417.35057MR552362
  13. [13] Krantz ( S.G. ). — Characterizations of various domains of holomorphy via ∂ estimates and applications to a problem of Kohn, Illinois. Journal Math.23(2), p. 267-285 (1979). Zbl0394.32009MR528563
  14. [14] Lelong ( P. ) and Gruman ( L.). - "Entire functions of several complex variables", Grundlehren der Mathematischen Wissenschaften282, Springer-Verlag, (1986). Zbl0583.32001MR837659
  15. [15] Mengotti ( G.) and Youssfi ( E.H.). - The weighted Bergman projection and related theory on the minimal ball, Bull. Sci. math.123, p. 501-525 (1999). Zbl0956.32006MR1713302
  16. [16] Rudin ( W. ). - "Function theory in the unit ball of Cn ", Grundlehren der Mathematischen Wissenschaften241, Springer-Verlag, New York-Berlin, 1980. Zbl0495.32001MR601594
  17. [17] Viêt Anh ( N.).— Fatou and Korányi-Vági type theorems on the minimal balls, Publ. Mat.46, 49-75 (2002). Zbl1013.32006MR1904856
  18. [18] Viêt Anh ( N.) and Youssfi ( E.H.). - Lipschitz estimates for the ∂-equation on the minimal ball, Michigan Math. J.49, p. 299-323 (2001). Zbl1011.32026MR1852305
  19. [19] Viêt Anh ( N.) and Youssfi ( E.H.). - Estimations Lipschitziennes optimales pour l'équation ∂ dans une classe de domaines convexes, C. R. Acad. Sci. Paris t. 332, Série I, p. 1065-1070 (2001). Zbl0997.32037MR1847481
  20. [20] Youssfi ( E.H.). — Proper holomorphic liftings and new formulas for the Bergman and Szegõ kernels, Stud. Math.152, 161-186 (2002). Zbl1013.32003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.