Discrete Löwner evolution
Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)
- Volume: 12, Issue: 4, page 433-451
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBauer, Robert O.. "Discrete Löwner evolution." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.4 (2003): 433-451. <http://eudml.org/doc/73611>.
@article{Bauer2003,
author = {Bauer, Robert O.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {discrete Löwner evolutions; random walk; phase transition property},
language = {eng},
number = {4},
pages = {433-451},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Discrete Löwner evolution},
url = {http://eudml.org/doc/73611},
volume = {12},
year = {2003},
}
TY - JOUR
AU - Bauer, Robert O.
TI - Discrete Löwner evolution
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 4
SP - 433
EP - 451
LA - eng
KW - discrete Löwner evolutions; random walk; phase transition property
UR - http://eudml.org/doc/73611
ER -
References
top- [1] Bauer R.O., Löwner's equation from a noncommutative probability perspective, math.PR/0208212 Zbl1055.46043
- [2] Beffara V. , Mouvement Brownien plan, SLE, invariance conforme et dimensions fractales , Ph. D. thesis, Université Paris XI, UFR Scientifique d'Orsay, 2003.
- [3] Deift P. , Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , AMS and CIMS, Providence, Rhode Island ( 2000). Zbl0997.47033MR1677884
- [4] Dieudonné J. , Grundzüge der modernen Analysis, Vieweg, Braunschweig (1985 ).
- [5] Duren P.L., Univalent Functions, Springer, New York, Berlin (1983). Zbl0514.30001MR708494
- [6] Lamperti J. , Criteria for the recurrence or transience of stochastic process. I, J. Math. Anal. Appl.1, p. 314-330 (1960). Zbl0099.12901MR126872
- [7] Lawler G.F. , An introduction to the stochastic Loewner evolution, preprint, ( 2001) . MR2087784
- [8] Lawler G.F. , Werner W.Universality for conformally invariant intersection exponents, J. Eur. Math. Soc.2, p. 291-328 (2000). Zbl1098.60081MR1796962
- [9] Lawler G.F. , Schramm O., Werner W., Values of Brownian intersection exponents I: Half-plane exponents, Acta Math.187, p. 237-273 (2001). Zbl1005.60097MR1879850
- [10] Lawler G.F. , Schramm O., Werner W., Values of Brownian intersection exponents II: Plane exponents, Acta Math.187, p. 275-308 (2001). Zbl0993.60083MR1879851
- [11] Lawler G.F. , Schramm O., Werner W., Values of Brownian intersection exponents III: Two-sided exponents, Ann. Inst. H. Poincaré Probab. Statist.38, no. 1, p. 109-123 (2002). Zbl1006.60075MR1899232
- [12] Lawler G.F. , Schramm O., Werner W., Analyticity of intersection exponents for planar Brownian motion , arXiv:math.PR/0005295 v1 31 May 2000 . Zbl1024.60033
- [13] Markushevich A.I., Theory of Functions of a Complex Variable , Vol. 3, Chelsea , New York (1977). Zbl0357.30002
- [14] Maassen H. , Addition of freely independent random variables , J. Funct. Anal.106, p. 409-438 (1992). Zbl0784.46047MR1165862
- [15] Muraki N. , Monotonic independence, monotonic central limit theorem and monotonic law of small numbers, Infin. Dimens. Anal. Quantum Probab. Relat. Top.4, no. 1, p. 39-58 (2001). Zbl1046.46049MR1824472
- [16] Muraki N. , Monotonic convolution and monotonic Lévy- Hinčin formula, preprint (2000).
- [17] Rohde S. , Schramm O., Basic properties of SLE, arXiv:math.PR/0106036. Zbl1081.60069
- [18] Schramm O. , Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math.118, p. 221-288 (2000). Zbl0968.60093MR1776084
- [19] Stroock D.W. , Probability Theory, an Analytic View , Cambridge University Press, Cambridge (1993). Zbl0925.60004MR1267569
- [20] Werner W. , on random planar curves and Schramm-Löwner evolutions, draft of lecture notes of the St. Flour summer school, 2002.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.