On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling

Régis Monneau

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 2, page 289-311
  • ISSN: 0240-2963

How to cite

top

Monneau, Régis. "On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.2 (2004): 289-311. <http://eudml.org/doc/73626>.

@article{Monneau2004,
author = {Monneau, Régis},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {regularity of the free boundary; stability of the free boundary; Hausdorff measure},
language = {eng},
number = {2},
pages = {289-311},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling},
url = {http://eudml.org/doc/73626},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Monneau, Régis
TI - On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 2
SP - 289
EP - 311
LA - eng
KW - regularity of the free boundary; stability of the free boundary; Hausdorff measure
UR - http://eudml.org/doc/73626
ER -

References

top
  1. [1] Alt ( H.W.) , Phillips ( D.). - A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math.368, p. 63-107 (1986). Zbl0598.35132MR850615
  2. [2] Berestycki ( H.), Bonnet ( A.), Chapman ( S.J.). - A Semi-elliptic System Arising in the Theory of type-II Superconductivity, Comm. Appl. Nonlinear Anal.1, p. 1-21 (1994). Zbl0866.35030
  3. [3] Berestycki ( H.), Nirenberg ( L.). - On the method of moving planes and the sliding method, Bol. Soc. Braseleira Mat. (N.S.)22, 1-37 (1991). Zbl0784.35025MR1159383
  4. [4] Bonnet ( A. ), Chapman ( S.J.), Monneau ( R.). - Convergence of Meissner minimisers of the Ginzburg-Landau energy of superconductivity as kappa tends to infinity, SIAM J. Math. Anal.31 (6), p. 1374-1395 (2000 ). Zbl0970.35031MR1766555
  5. [5] Bonnet ( A. ), Monneau ( R.). - Distribution of vortices in a type II superconductor as a free boundary problem: Existence and regularity via Nash-Moser theory, Interfaces and Free Boundaries2, p. 181-200 (2000). Zbl0989.35146MR1760411
  6. [6] Brézis ( H. ), Kinderlehrer ( D.). - The Smoothness of Solutions to Nonlinear Variational Inequalities, Indiana Univ. Math. J.23 (9), p. 831-844 (1974). Zbl0278.49011MR361436
  7. [7] Cabré ( X.) , Caffarelli ( L.A.). - Fully Nonlinear Elliptic Equations, Colloquium Publications. Amer. Math. Soc.43 (1995). Zbl0834.35002MR1351007
  8. [8] Caffarelli ( L.A.). - Compactness Methods in Free Boundary Problems, Comm. Partial Differential Equations5 (4), p. 427-448 (1980). Zbl0437.35070MR567780
  9. [9] Caffarelli ( L.A.). - A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets, Boll. Un. Mat. Ital.A18 (5), p. 109-113 (1981). Zbl0453.35085MR607212
  10. [10] Caffarelli ( L.A.). - Free boundary problem in higher dimensions , Acta Math.139, p. 155-184 (1977). Zbl0386.35046
  11. [11] Caffarelli ( L.A.). - The Obstacle Problem revisited, J. Fourier Anal. Appl.4, p. 383-402 (1998). Zbl0928.49030MR1658612
  12. [12] Caffarelli ( L.A.), Salazar ( J.), Shahgholian ( H.). - Free Boundary Regularity for a Problem Arising in Superconductivity, Arch. Ration. Mech. Anal.171 (1), p. 115-128 (2004). Zbl1072.35203MR2029533
  13. [13] Chapman ( S.J.), Rubinstein ( J.), Schatzman ( M.). — A Mean-field Model of Superconducting vortices, European J. Appl. Math.7, p. 97-111 (1996). Zbl0849.35135MR1388106
  14. [14] Friedman ( A.). - Variational Principles and Free Boundary Problems, Pure and applied mathematics, ISSN 0079-8185, a Wiley-Interscience publication, (1982). Zbl0564.49002MR679313
  15. [15] Gilbarg ( D. ) , Trudinger ( N.S.). - Elliptic Partial Differential Equations of Second Order, Springer-Verlag (1997 ). 
  16. [16] Kinderlehrer ( D.), Nirenberg ( L.). - Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci4, p. 373-391 (1977). Zbl0352.35023MR440187
  17. [17] D. Kinderlehrer , G. Stampacchia. - An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, (1980). Zbl0457.35001MR567696
  18. [18] Ladyshenskaya ( O.A.), Ural'tseva ( N.N.). - Linear and Quasilinear Elliptic Equations, New York: Academic Press, (1968). Zbl0164.13002MR244627
  19. [19] Lin ( F.H.). - An unpublished course at CourantInstitute of Mathematical Sciences, (1990). 
  20. [20] Monneau ( R.). - On the Number of Singularities for the Obstacle Problem in Two Dimensions, J. of Geometric Analysis13 (2), p. 359-389 (2003). Zbl1041.35093MR1967031
  21. [21] Morrey ( C.B. ). - Multiple Integrals in the Caculus of Variations , Springer-Verlag, Berlin- Heidelberg -New York, (1966). Zbl0142.38701MR202511
  22. [22] J.F. Rodrigues . - Obstacle Problems in Mathematical Physics , North-Holland, (1987). Zbl0606.73017MR880369
  23. [23] Sandier ( E.), Serfaty ( S.). - A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, Annales Scientifiques de l'ENS33, p. 561-592, (2000 ). Zbl1174.35552MR1832824
  24. [24] Sandier ( E.), Serfaty ( S.). - On the Energy of Type-II Superconductors in the Mixed Phase, Reviews in Mathematical Physics12, No 9, p. 1219-1257, (2000 ). Zbl0964.49006MR1794239
  25. [25] Serfaty ( S.). - Stable Configurations in Superconductivity: Uniqueness, Multiplicity and Vortex-Nucleation, Archive for Rational Mechanics and Analysis149, p. 329-365 (1999). Zbl0959.35154MR1731999
  26. [26] Weiss ( G.S. ). - A homogeneity improvement approach to the obstacle problem, Invent. math.138, p. 23-50 (1999). Zbl0940.35102MR1714335

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.