A rigorous derivation of free-boundary problem arising in superconductivity
Etienne Sandier; Sylvia Serfaty
Annales scientifiques de l'École Normale Supérieure (2000)
- Volume: 33, Issue: 4, page 561-592
- ISSN: 0012-9593
Access Full Article
topHow to cite
topSandier, Etienne, and Serfaty, Sylvia. "A rigorous derivation of free-boundary problem arising in superconductivity." Annales scientifiques de l'École Normale Supérieure 33.4 (2000): 561-592. <http://eudml.org/doc/82527>.
@article{Sandier2000,
author = {Sandier, Etienne, Serfaty, Sylvia},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {4},
pages = {561-592},
publisher = {Elsevier},
title = {A rigorous derivation of free-boundary problem arising in superconductivity},
url = {http://eudml.org/doc/82527},
volume = {33},
year = {2000},
}
TY - JOUR
AU - Sandier, Etienne
AU - Serfaty, Sylvia
TI - A rigorous derivation of free-boundary problem arising in superconductivity
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 4
SP - 561
EP - 592
LA - eng
UR - http://eudml.org/doc/82527
ER -
References
top- [1] ALMEIDA L., BETHUEL F., Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. 77 (1998) 1-49. Zbl0904.35023MR99f:35183
- [2] AFTALION A., SANDIER E., SERFATY S., Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint. Zbl1027.35123
- [3] BERESTYCKI H., BONNET A., CHAPMAN J., A semi-elliptic system arising in the theory of type-II superconductivity, Comm. Appl. Nonlinear Anal. 1 (3) (1994) 1-21. Zbl0866.35030MR95e:35192
- [4] BETHUEL F., BREZIS H., HÉLEIN F., Ginzburg-Landau Vortices, Birkhäuser, 1994. Zbl0802.35142MR95c:58044
- [5] BONNET A., MONNEAU R., Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, Interfaces and Free Boundaries (to appear). Zbl0989.35146
- [6] BETHUEL F., RIVIÈRE T., Vortices for a variational problem related to superconductivity, Annales IHP, Analyse non Linéaire 12 (1995) 243-303. Zbl0842.35119MR96g:35045
- [7] CIORANESCU D., MURAT F., Un terme étrange venu d'ailleurs, in : Nonlinear Partial Differential Equations and their Applications, Coll. de France Semin. Vol. II, Res. Notes Math., Vol. 60, 1982, pp. 98-138. Zbl0496.35030MR84e:35039a
- [8] CHAPMAN S.J., RUBINSTEIN J., SCHATZMAN M., A mean-field model of superconducting vortices, Eur. J. Appl. Math. 7 (2) (1996) 97-111. Zbl0849.35135MR97b:82111
- [9] GIORGI T., PHILLIPS D., The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359 (electronic). Zbl0920.35058MR2000b:35235
- [10] JERRARD R., Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. Zbl0928.35045MR2001f:35115
- [11] MURAT F., L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q < 2, J. Math. Pures Appl. 60 (1981) 309-322. Zbl0471.46020MR83b:46045
- [12] RODRIGUES J.F., Obstacle Problems in Mathematical Physics, Mathematical Studies, North-Holland, 1987. Zbl0606.73017MR88d:35006
- [13] SANDIER E., Lower bounds for the energy of unit vector fields and application, J. Functional Anal. 152 (2) (1998) 379-403. Zbl0908.58004MR99b:58056
- [14] SANDIER E., SERFATY S., Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annales IHP, Analyse non Linéaire 17 (1) (2000) 119-145. Zbl0947.49004MR2001i:58039
- [15] SANDIER E., SERFATY S., On the energy of type-II superconductors in the mixed phase, Reviews in Math. Phys. (to appear). Zbl0964.49006
- [16] SERFATY S., Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part I, Comm. Contemp. Math. 1 (2) (1999) 213-254. Zbl0944.49007MR2001a:82077
- [17] SERFATY S., Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part II, Comm. Contemp. Math. 1 (3) (1999) 295-333. Zbl0964.49005MR2001f:82089
- [18] SERFATY S., Stable configurations in superconductivity : Uniqueness, multiplicity and vortex-nucleation, Arch. Rat. Mech. Anal. 149 (1999) 329-365. Zbl0959.35154MR2001h:82114
- [19] TINKHAM M., Introduction to Superconductivity, 2nd edn., McGraw-Hill, 1996.
Citations in EuDML Documents
top- Edoardo Mainini, A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity
- Sylvia Serfaty, On a model of rotating superfluids
- Sylvia Serfaty, On a model of rotating superfluids
- Sylvia Serfaty, Vorticité dans les équations de Ginzburg-Landau de la supraconductivité
- Régis Monneau, On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling
- Tristan Rivière, Ginzburg-Landau vortices : the static model
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.