A rigorous derivation of free-boundary problem arising in superconductivity

Etienne Sandier; Sylvia Serfaty

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 4, page 561-592
  • ISSN: 0012-9593

How to cite

top

Sandier, Etienne, and Serfaty, Sylvia. "A rigorous derivation of free-boundary problem arising in superconductivity." Annales scientifiques de l'École Normale Supérieure 33.4 (2000): 561-592. <http://eudml.org/doc/82527>.

@article{Sandier2000,
author = {Sandier, Etienne, Serfaty, Sylvia},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {4},
pages = {561-592},
publisher = {Elsevier},
title = {A rigorous derivation of free-boundary problem arising in superconductivity},
url = {http://eudml.org/doc/82527},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Sandier, Etienne
AU - Serfaty, Sylvia
TI - A rigorous derivation of free-boundary problem arising in superconductivity
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 4
SP - 561
EP - 592
LA - eng
UR - http://eudml.org/doc/82527
ER -

References

top
  1. [1] ALMEIDA L., BETHUEL F., Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. 77 (1998) 1-49. Zbl0904.35023MR99f:35183
  2. [2] AFTALION A., SANDIER E., SERFATY S., Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint. Zbl1027.35123
  3. [3] BERESTYCKI H., BONNET A., CHAPMAN J., A semi-elliptic system arising in the theory of type-II superconductivity, Comm. Appl. Nonlinear Anal. 1 (3) (1994) 1-21. Zbl0866.35030MR95e:35192
  4. [4] BETHUEL F., BREZIS H., HÉLEIN F., Ginzburg-Landau Vortices, Birkhäuser, 1994. Zbl0802.35142MR95c:58044
  5. [5] BONNET A., MONNEAU R., Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, Interfaces and Free Boundaries (to appear). Zbl0989.35146
  6. [6] BETHUEL F., RIVIÈRE T., Vortices for a variational problem related to superconductivity, Annales IHP, Analyse non Linéaire 12 (1995) 243-303. Zbl0842.35119MR96g:35045
  7. [7] CIORANESCU D., MURAT F., Un terme étrange venu d'ailleurs, in : Nonlinear Partial Differential Equations and their Applications, Coll. de France Semin. Vol. II, Res. Notes Math., Vol. 60, 1982, pp. 98-138. Zbl0496.35030MR84e:35039a
  8. [8] CHAPMAN S.J., RUBINSTEIN J., SCHATZMAN M., A mean-field model of superconducting vortices, Eur. J. Appl. Math. 7 (2) (1996) 97-111. Zbl0849.35135MR97b:82111
  9. [9] GIORGI T., PHILLIPS D., The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359 (electronic). Zbl0920.35058MR2000b:35235
  10. [10] JERRARD R., Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. Zbl0928.35045MR2001f:35115
  11. [11] MURAT F., L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q &lt; 2, J. Math. Pures Appl. 60 (1981) 309-322. Zbl0471.46020MR83b:46045
  12. [12] RODRIGUES J.F., Obstacle Problems in Mathematical Physics, Mathematical Studies, North-Holland, 1987. Zbl0606.73017MR88d:35006
  13. [13] SANDIER E., Lower bounds for the energy of unit vector fields and application, J. Functional Anal. 152 (2) (1998) 379-403. Zbl0908.58004MR99b:58056
  14. [14] SANDIER E., SERFATY S., Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annales IHP, Analyse non Linéaire 17 (1) (2000) 119-145. Zbl0947.49004MR2001i:58039
  15. [15] SANDIER E., SERFATY S., On the energy of type-II superconductors in the mixed phase, Reviews in Math. Phys. (to appear). Zbl0964.49006
  16. [16] SERFATY S., Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part I, Comm. Contemp. Math. 1 (2) (1999) 213-254. Zbl0944.49007MR2001a:82077
  17. [17] SERFATY S., Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part II, Comm. Contemp. Math. 1 (3) (1999) 295-333. Zbl0964.49005MR2001f:82089
  18. [18] SERFATY S., Stable configurations in superconductivity : Uniqueness, multiplicity and vortex-nucleation, Arch. Rat. Mech. Anal. 149 (1999) 329-365. Zbl0959.35154MR2001h:82114
  19. [19] TINKHAM M., Introduction to Superconductivity, 2nd edn., McGraw-Hill, 1996. 

Citations in EuDML Documents

top
  1. Edoardo Mainini, A Global Uniqueness Result for an Evolution Problem Arising in Superconductivity
  2. Sylvia Serfaty, On a model of rotating superfluids
  3. Sylvia Serfaty, On a model of rotating superfluids
  4. Sylvia Serfaty, Vorticité dans les équations de Ginzburg-Landau de la supraconductivité
  5. Régis Monneau, On the regularity of a free boundary for a nonlinear obstacle problem arising in superconductor modelling
  6. Tristan Rivière, Ginzburg-Landau vortices : the static model

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.