Multizetas, perinomal numbers, arithmetical dimorphy, and ARI/GARI

Jean Ecalle

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 4, page 683-708
  • ISSN: 0240-2963

How to cite

top

Ecalle, Jean. "Multizetas, perinomal numbers, arithmetical dimorphy, and ARI/GARI." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.4 (2004): 683-708. <http://eudml.org/doc/73640>.

@article{Ecalle2004,
author = {Ecalle, Jean},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {eng},
number = {4},
pages = {683-708},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Multizetas, perinomal numbers, arithmetical dimorphy, and ARI/GARI},
url = {http://eudml.org/doc/73640},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Ecalle, Jean
TI - Multizetas, perinomal numbers, arithmetical dimorphy, and ARI/GARI
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 4
SP - 683
EP - 708
LA - eng
UR - http://eudml.org/doc/73640
ER -

References

top
  1. [B] Broadhurst ( D.J. ). — Conjectured Enumeration of irreducible Multiple Zeta Values, from Knots and Feynman Diagrams preprint, Physics Dept., Open University Milton Keynes, MK76AA, UK, Nov. 1996. 
  2. [E1] Ecalle ( J. ). — A Tale of Three Structures: the Arithmetics of Multizetas, the Analysis of Singularities, the Lie algebra ARI. in Differential Equations and the Stokes Phenomenon, B.L.J. Braaksma, G.K. Immink , M. van der Put, J. Top Eds., World Scient. Publ., vol. 17, p. 89-1462002. Zbl1065.11069MR2067332
  3. [E2] Ecalle ( J. ). - ARI/GARI, la dimorphie et l'arithmétique des multizêtas: un premier bilan, Jour. de Théorie des Nombres de Bordeaux15, p. 411-478 (2003). MR2140864
  4. [E3] Ecalle ( J. ). - ARI/GARI and the flexion structure. 
  5. [E4] Ecalle ( J. ). - ARI/GARI and its special bimoulds. 
  6. [E5] Ecalle ( J. ). - Explicit-canonical decomposition of multizetas into irreducibles . 
  7. [E6] Ecalle ( J. ). - Perinomal numbers and multizeta irreducibles . 
  8. [MPH] Minh ( H.N. ), Petitot ( M.), Hoeven ( J.V.D.). - Shuffle algebra and polylogaritms, Disc. Math.225, p. 217-230 (2000). Zbl0965.68129MR1798332

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.