ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan
Journal de théorie des nombres de Bordeaux (2003)
- Volume: 15, Issue: 2, page 411-478
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topEcalle, Jean. "ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan." Journal de théorie des nombres de Bordeaux 15.2 (2003): 411-478. <http://eudml.org/doc/249070>.
@article{Ecalle2003,
abstract = {Nous tentons, dans ce survol, de présenter une structure méconnue : l'algèbre de Lie ARI et son groupe GARI. Puis nous montrons quels progrès elle a déjà permis de réaliser dans l'étude arithmético-algébrique des valeurs zêta multiples et aussi quelles possibilités elle ouvre pour l'exploration du phénomène plus général de /emph\{dimorphie numérique\}.},
author = {Ecalle, Jean},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {multiple zeta values; dimorphy; Lie algebra},
language = {fre},
number = {2},
pages = {411-478},
publisher = {Université Bordeaux I},
title = {ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan},
url = {http://eudml.org/doc/249070},
volume = {15},
year = {2003},
}
TY - JOUR
AU - Ecalle, Jean
TI - ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 2
SP - 411
EP - 478
AB - Nous tentons, dans ce survol, de présenter une structure méconnue : l'algèbre de Lie ARI et son groupe GARI. Puis nous montrons quels progrès elle a déjà permis de réaliser dans l'étude arithmético-algébrique des valeurs zêta multiples et aussi quelles possibilités elle ouvre pour l'exploration du phénomène plus général de /emph{dimorphie numérique}.
LA - fre
KW - multiple zeta values; dimorphy; Lie algebra
UR - http://eudml.org/doc/249070
ER -
References
top- [Ap] R. Apéry, Irrationalité de ζ(2) et ζ(3). Astérisque61 (1979), 11-13. Zbl0401.10049
- [Bro] D.J. Broadhurst, Conjectured Enumeration of irreducible Multiple Zeta Values, from Knots and Feynman Diagrams, preprint, Physics Dept., Open UniversityMilton Keynes, MK7 6AA, UK, Nov. 1996.
- [Bor] J. Borwein, Three Adventures: Symbolically Discovered Identities for ζ(4n + 3) and like matters, July 14, 1997, Vienna, 9th Intern. Conference on Formal Power Series and Algebraic Combinatoics (available at: www.cecm.sfu.ca/preprints/)
- [C] H. Cohen, Démonstration de l'irrationalité de ζ(3) (d'après Apéry). Séminaire de Théorie des Nombres de Grenoble, VI.1-VI.9, 1978.
- [D] V.G. Drinfel'd, On quasi-triangular quasi-Hopf algebras and some groups related to Gal(Q/Q). Leningrad Math. J.2 (1991), 829-860. Zbl0728.16021MR1080203
- [Eu] L. Euler, Opera Omnia, Ser.1, Vol XV, Teubner, Berlin, 1997, pp 217-267.
- [E1] J. Ecalle, Théorie des invariants holomorphes. PhD, Orsay, 1974. The first part appeared in Journ. Math. Pures et Appl. 54 (1974).
- [E2] J. Ecalle, Les fonctions résurgentes, Vol.1,2,3. Publ. Math. Orsay, 1981-1985. Zbl0602.30029
- [E3] J. Ecalle, Weighted products and parametric resurgence. in: Méthodes résurgentes, Travaux en Cours, 47, pp 7-49, 1994, Ed. L.Boutet de Monvel. Zbl0834.34067MR1296470
- [E4] J. Ecalle, A Tale of Three Structures: the Arithmetics of Multizetas, the Analysis of Singularities, the Lie algebra ARI. To appear in the Proceedings of the Mai 2001 Groningen Workshop on Singularities and Stokes Phenomena. Zbl1065.11069MR2067332
- [E5] J. Ecalle, ARI/GARI, Dimorphy, and Multizetas: soon available on my Orsay WEB page.
- [E6] J. Ecalle, Six lessons on the canonical-explicit decomposition of multizetas into irreducibles, based on a DEA course delivered at Orsay in May-June 2003; to be submitted to the Ann. Toulouse ; soon on my Orsay WEB page.
- [G1] A.B. Goncharov, Polylogarithms in arithmetic and geometry. Proc. ICM-94, Zurich, 1995, pp. 374-387 Zbl0849.11087MR1403938
- [G2] A.B. Goncharov, Multiple polylogarithms, Cyclotomy and Modular Complezes. Math. Research Letters5 (1998), 497-515. Zbl0961.11040MR1653320
- [K] V.G. Kac, Lie Superalgebras. Adv. Math.26 (1977), 8-96 Zbl0366.17012MR486011
- [MP] H.N. Minh, M. Petitot, Lyndon words, polylogarithms and the Riemann ζ function. submitted to Disc. Math. Zbl0959.68144
- [R] T. Rivoal, Propriétés diophantiennes des valeurs de la fonction zêta de Riemann aux entiers impairs. Thèse, Caen, 2001.
- [S] M. Scheunert, The theory of Lie superalgebras. An introduction. Springer, 1979. Zbl0407.17001MR537441
- [Z] D. Zagier, Values of Zeta Functions and their Applications. First European Congress of Mathematics, Vol. 2, 427-512, Birkhäuser, Boston, 1994. Zbl0822.11001MR1341859
Citations in EuDML Documents
top- Jean Ecalle, Multizetas, perinomal numbers, arithmetical dimorphy, and ARI/GARI
- Jean-Yves Enjalbert, Hoang Ngoc Minh, Analytic and combinatoric aspects of Hurwitz polyzêtas
- Jacky Cresson, Calcul Moulien
- Jean-Yves Enjalbert, Hoang Ngoc Minh, Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues
- J. Cresson, S. Fischler, T. Rivoal, Séries hypergéométriques multiples et polyzêtas
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.