Differential Galois approach to the non-integrability of the heavy top problem Andrzej J. Maciejewski, Maria Przybylska (2005) Annales de la Faculté des sciences de Toulouse : Mathématiques
From 𝔰𝔲 ( 2 ) Gaudin models to integrable tops. Petrera, Matteo, Ragnisco, Orlando (2007) SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Integrable Hamiltonian systems on Lie groups: Kowalewski type. Jurdjevic, V. (1999) Annals of Mathematics. Second Series
Invariant varieties of periodic points for the discrete Euler top. Saito, Satoru, Saitoh, Noriko (2006) SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Multiple periodic solutions to a suspension bridge O. D. E. McKenna, P.J., Moore, K.S. (2000) Electronic Journal of Differential Equations (EJDE) [electronic only]
Non-complete integrability of a satellite in circular orbit. Boucher, Delphine (2006) Portugaliae Mathematica. Nova Série
On classical r -matrix for the Kowalevski gyrostat on so ( 4 ) . Komarov, Igor V., Tsiganov, Andrey V. (2006) SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
On isomorphism of integrable cases of the Euler equations on the bi-Hamiltonian manifolds e ( 3 ) and so ( 4 ) . Tsyganov, A.V. (2004) Zapiski Nauchnykh Seminarov POMI
On the topology of an integrable variant of a nonholonomic Suslov problem Zapiski naucnych seminarov POMI
Phase space of rolling solutions of the tippe top. Glad, S.Torkel, Petersson, Daniel, Rauch-Wojciechowski, Stefan (2007) SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
The Kowalevski's top and the method of Syzygies Franco Magri (2005) Annales de l’institut Fourier A new algorithm for finding separation coordinates is tested on the example of Kowalev ski’s top.
The Rigid Body Dynamics: Classical and Algebro-geometric Integration Borislav Gajić (2013) Zbornik Radova
Tools for verifying classical and quantum superintegrability. Kalnins, Ernest G., Kress, Jonathan M., Miller, Willard jun. (2010) SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]