Coefficients de Stokes du modèle cubique : point de vue de la résurgence quantique

Duc Tai Trinh

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 1, page 71-103
  • ISSN: 0240-2963

How to cite

top

Trinh, Duc Tai. "Coefficients de Stokes du modèle cubique : point de vue de la résurgence quantique." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.1 (2005): 71-103. <http://eudml.org/doc/73645>.

@article{Trinh2005,
author = {Trinh, Duc Tai},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {differential equations; Stokes coefficients; resurgence; non-linear oscillator },
language = {fre},
number = {1},
pages = {71-103},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Coefficients de Stokes du modèle cubique : point de vue de la résurgence quantique},
url = {http://eudml.org/doc/73645},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Trinh, Duc Tai
TI - Coefficients de Stokes du modèle cubique : point de vue de la résurgence quantique
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 1
SP - 71
EP - 103
LA - fre
KW - differential equations; Stokes coefficients; resurgence; non-linear oscillator
UR - http://eudml.org/doc/73645
ER -

References

top
  1. [1] Bender ( C.M. ) , Wu ( T.T. ). — Anharmonic oscillator , Phys. Rev.184, p. 1231-1260 (1969 ). MR260323
  2. [2] Berry ( M.V. ), Howls ( C.J.). — Hyperasymptotics, Proc. Roy. Soc. Lond.A, Vol 430, p. 653-668, (1990). Zbl0745.34052MR1070081
  3. [3] Berry ( M.V. ), Howls ( C.J.). — Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. Lond.A, Vol 434, p. 657-675 (1991). Zbl0764.30031MR1126872
  4. [4] Boas ( R. PH. ) JR.. — Entire functions, Academic Press Inc., New York, ( 1954). Zbl0058.30201MR68627
  5. [5] Candelpergher ( B.). — Une introduction à la résurgence , Gaz. Math. No. 42, p. 36-64 (1989). Zbl0825.30006MR1029893
  6. [6] Candelpergher ( B.), Nosmas ( C.), Pham ( F.). — Approche de la résurgence, Actualités mathématiques, Hermann, Paris (1993). Zbl0791.32001
  7. [7] Colin De Verdière ( Y.). — Singular lagrangian manifolds and semi-classiscal analysis, Soumis. 
  8. [8] Copson ( E.T. ). — Asymptotic expansions, Cambridge University Press (1965). Zbl0123.26001MR168979
  9. [9] Delabaere ( E. ). — Un peu d'asymptotique, Pupé 28 , janvier 1997, Université de Nice-Sophia Antipolis , URA 168 J.A. Dieudonné. 
  10. [10] Delabaere ( E.), Dillinger ( H.), Pham ( F.). - Résurgence de Voros et périodes des courbes hyperelliptiques, Annales de l'Institut Fourier, Vol 43, Fasc. 1, p. 163-199 (1993). Zbl0766.34032MR1209700
  11. [11] Delabaere ( E.), Dillinger ( H.), Pham ( F.). - Exact semi-classical expansions for one dimensional quantum oscillators, Journal Math. Phys.38, 12, p. 6126-6184 (1997). Zbl0896.34051MR1483488
  12. [12] Delabaere ( E.), Pham ( F.). - Resurgent methods in semi-classical asymptotics, Ann. Inst. Henri Poincaré, Sect. A, Vol. 71, No 1, p. 1-94 (1999). Zbl0977.34053MR1704654
  13. [13] Delabaere ( E. ). — Introduction to the Ecalle theory , In E. Tournier, editor, Computer Algebra and Differential Equations, number 193, London Math. Soc., Lecture Note Series, Cambridge University Press, p. 59-102 (1994). Zbl0805.40007MR1278057
  14. [14] Delabaere ( E. ), Howls ( C.J.). - Hyperasymptotics for multidimensional Laplace integrals with boundaries, Toward the exact WKB analysis of differential equations, linear or non-linear (Kyoto, 1998), 119, p. 145-163, Kyoto Univ. Press, Kyoto (2000). Zbl0998.58014MR1770289
  15. [15] Delabaere ( E.), Howls ( C.J.). — Global asymptotics for multiple integrals with boundaries, Duke Math. J.112, no. 2, p. 199-264 (2002). Zbl1060.30049MR1894360
  16. [16] Dingle ( R.B. ). — Asymptotic expansions : their derivation and interpretation , Academic Press, Oxford (1973). Zbl0279.41030MR499926
  17. [17] Ecalle ( J. ). — Les fonctions résurgentes, • Les algèbres de fonctions résurgentes, Publ. Math. D'Orsay , Université Paris-Sud, 1981.05 ( 1981 ). Zbl0499.30034
  18. • Les fonctions résurgentes appliquées à l'itération, Publ. Math. D'Orsay, Université Paris-Sud, 1981.06 (1981). Zbl0499.30035
  19. • L'équation du pont et la classification analytique des objets locaux , Publ. Math. D'Orsay, Université Paris-Sud , 1985.05 (1985). Zbl0602.30029MR852210
  20. [18] Ecalle ( J. ). - Cinq applications des fonctions résurgentes , preprint 84T 62, Orsay (1984). 
  21. [19] Ecalle ( J. ). - Weighted products and parametric resurgence, « Analyse algébrique des perturbations singulières I : Méthodes résurgentes », Travaux en cours, Hermann, Paris, p. 7-49 (1994). Zbl0834.34067
  22. [20] Fedoryuk ( M.V. ). — Asymptotic methods for linear ordinary differential equations, Moscow: Nauka, (1983). Zbl0538.34001MR732787
  23. [21] Hille ( E.). — Ordinary Differential Equations in the Complex Domain, Wiley (1976). Zbl0343.34007
  24. [22] Jidoumou ( A.O.). — Modèles de Résurgence paramétrique (fonctions d'Airy et cylindro-paraboliques, J. Math. Pures et Appl., 73, 2, p. 111-190 (1994). Zbl0867.34046
  25. [23] Loday-Richaud ( M.). — Solutions formelles des systèmes différentiels linéaires méromorphes et sommation, Exposition. Math.13, no. 2-3, p. 116-162 (1995). Zbl0831.34002MR1346200
  26. [24] Malgrange ( B.). - Sommation des séries divergentes, Expositiones Mathematicae13, p. 163-222 (1995). Zbl0836.40004MR1346201
  27. [25] Malgrange ( B.). — Equations différentielles à coefficients polynomiaux, Progress in Mathematics, Volume 96, Birkhaüser, Basel (1991). Zbl0764.32001
  28. [26] Martinet ( J. ) , Ramis ( J.P.). — Théorie de Galois différentielle et resommation, Computer Algebra and Differential Equations (E. Tournier ed.), Acad. Press (1984). Zbl0722.12007
  29. [27] Mezincescu ( G.A.). — Some properties of eigenvalues and eigenfunctions of the cubic oscillator with imaginary coupling constant , J. Phys. A.33 ( 2000). Zbl0973.34070MR1792668
  30. [28] Olver ( F.W.J. ). - Asymptotics and special functions, New York, Academic Press ( 1974). Zbl0303.41035MR435697
  31. [29] Pham ( F.). - Vanishing homologies and the n variable saddlepoint method , Proc. Symposia in Pure Math.40, part 2 (1983). Zbl0519.49026MR713258
  32. [30] Pham ( F.). - Resurgence, Quantized canonical transformations and multiinstanton expansions, in Algebraic Analysis II, vol. in honor of M.Sato, R.I.M.S. Kyoto, Kashiwara Kawai ed., Acad. Press, p. 699-726 (1988). Zbl0686.58032MR992490
  33. [31] Pham ( F.). — Fonctions résurgentes implicites, C. R. Acad. Sci. Paris, 309, Série I, p. 999-1001 (1989). Zbl0734.32001MR1054521
  34. [32] Pham ( F.). — Variétés lagrangiennes complexes et fonctions résurgentes, Actes du séminaire franco-viêtnamien « Analyse pluri-complexe et topologie des singularités », Math. J. Viêt. Math. Soc. , p. 97-130 (1995). 
  35. [33] Pham ( F.). — Confluence of turning points in exact WKB analysis, The Stokes phenomenon and Hilbert's 16th problem (Groningen, 1995, p. 215-235, World Sci. Publishing, River Edge, NJ (1996). Zbl0857.34057MR1443695
  36. [34] Pham ( F.). — Multiple turning points in exact WKB analysis (variations on a theme of Stokes), Toward the exact WKB analysis of differential equations linear or non-linear (C.Howls, T.Kawai, Y.Takei ed.), KyotoUniversity Press (2000), p. 71-85. Zbl1017.34091MR1770284
  37. [35] Ramis ( J.P. ). — Séries divergentes et théories asymptotiques , Suppl. au bulletin de la SMF. Panoramas et Synthèses. v. 121. Paris : Société Mathématique de France ( 1993). Zbl0830.34045MR1272100
  38. [36] Ramis ( J.P. ), Sibuya ( Y.). — A new proof of multisummability of formal solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier (Grenoble)44, no. 3, p. 811-848 (1994). Zbl0812.34005MR1303885
  39. [37] Sibuya ( Y. ). — Global Theory of a Second Order Linear Differential Equation with a Polynomial Coefficient, Mathematics Studies18, North-Holland Publishing Company (1975). Zbl0322.34006MR486867
  40. [38] Sternin ( B. ) , Shatalov ( V.). — Borel-Laplace transform and Asymptotic Theory (Introduction to Resurgent Analysis, CRC-Press, Boca Raton, Florida, USA (1995). Zbl0852.34001MR1397029
  41. [39] Shin ( K.C. ). — On the reality of the eigenvalues for a class of PT-symmetric oscillators, Comm. Math. Phys.229 (2002), n°3, p. 543-564. Zbl1017.34083
  42. [40] Stokes ( G.G. ). — On the Discontinuity of arbitrary constants which appear in divergent developments, Transactions of the Cambridge Philosophical Society, Vol.X, Part. I (1857). 
  43. [41] Trinh ( D.T. ). - Asymptotique et analyse spectrale de l'oscillateur cubique , Thèse, Université de Nice (2002). 
  44. [42] Trinh ( D.T. ). - On the Sturm-Liouville problem for the complex cubic oscillator, To appear in Asymptotic Analysis. Zbl1076.34026
  45. [43] Voros ( A. ). — The return of the quartic oscillator. The complex WKB method, Ann. Inst. H. Poincaré, Physique Théorique, 39, p. 211-338 (1983). Zbl0526.34046MR729194
  46. [44] Voros ( A. ). - Résurgence quantique, Ann. Inst. Fourier43, 5, p. 1509-1534 (1993). Zbl0807.35105MR1275207
  47. [45] Wasow ( W.). — Asymptotic expansions for ODE, Interscience pub. (1965). 
  48. [46] Zinn-Justin ( J.). — Quantum field theory and critical phenomena, Oxford science publications ( 1989). Zbl0865.00014MR1079938

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.