Geometry of superficial elements

Romain Bondil

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 2, page 185-200
  • ISSN: 0240-2963

How to cite

top

Bondil, Romain. "Geometry of superficial elements." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.2 (2005): 185-200. <http://eudml.org/doc/73647>.

@article{Bondil2005,
author = {Bondil, Romain},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Hilbert polynomial; graded algebra; noetherian ring; projective scheme; blow-up},
language = {eng},
number = {2},
pages = {185-200},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Geometry of superficial elements},
url = {http://eudml.org/doc/73647},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Bondil, Romain
TI - Geometry of superficial elements
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 2
SP - 185
EP - 200
LA - eng
KW - Hilbert polynomial; graded algebra; noetherian ring; projective scheme; blow-up
UR - http://eudml.org/doc/73647
ER -

References

top
  1. [AC] Bourbaki ( N. ). — Algèbre commutative, Chap. 8 et 9, Masson, 1983. Zbl0579.13001MR722608
  2. [B-L] Bondil ( R.), Lê ( D.T.). - Caractérisations des éléments superficiels d'un idéal, C.R. Acad. Sci. Paris, t. 332, Sér. I, p. 717-722 (2001). Zbl1006.14013MR1843194
  3. [Bo] Bondil ( R. ). — Géométrie des problèmes de multiplicité et équisingularité dans un idéal, Thèse, Université de Provence, 2002. Avalaible at http://bibcmi.univ-mrs.fr/ . 
  4. [EGA] Grothendieck ( A.), Dieudonné ( J.). — Eléments de Géométrie algébrique II et IV, Publ. Math. IHES8, 24 (1960-1967). 
  5. [Ei] Eisenbud ( D. ). — Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer Verlag , 1995. Zbl0819.13001MR1322960
  6. [E-H] Eisenbud ( D. ) , Harris ( J.). — The geometry of schemes, Graduate Texts in Math. 197, Springer Verlag, 1999. Zbl0960.14002
  7. [ FLENNER ( H.), Vogel ( W.). — On multiplicities of local rings, Manuscripta Math.78, p. 85-97 (1993). Zbl0794.13016MR1201763
  8. [Hk] Hironaka ( H.). — Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math.79, p. 109-326 (1964). Zbl0122.38603MR199184
  9. [Ii] Iitaka ( S. ). — Algebraic Geometry, Graduate Texts in Mathematics 76, Springer Verlag, 1982. Zbl0491.14006MR637060
  10. [Ki] Kirby ( D. ).— A note on superficial elements of an ideal in a local ring, Quart. J. Math. Oxford Ser. (2)14, p. 21-28 (1963). Zbl0115.03301MR143780
  11. [Sa] Samuel ( P. ). — La notion de multiplicité en algèbre et en géométrie algébrique, J. Math. Pures Appl.30, p. 159-275 (1951). Zbl0044.02701MR48103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.