An inversion formula and a note on the Riesz kernel

Andrejs Dunkels

Annales de l'institut Fourier (1976)

  • Volume: 26, Issue: 4, page 197-205
  • ISSN: 0373-0956

Abstract

top
For potentials U K T = K * T , where K and T are certain Schwartz distributions, an inversion formula for T is derived. Convolutions and Fourier transforms of distributions in ( D L ' p ) -spaces are used. It is shown that the equilibrium distribution with respect to the Riesz kernel of order α , 0 < α < m , of a compact subset E of R m has the following property: its restriction to the interior of E is an absolutely continuous measure with analytic density which is expressed by an explicit formula.

How to cite

top

Dunkels, Andrejs. "An inversion formula and a note on the Riesz kernel." Annales de l'institut Fourier 26.4 (1976): 197-205. <http://eudml.org/doc/74299>.

@article{Dunkels1976,
abstract = {For potentials $U^T_K=K*T$, where $K$ and $T$ are certain Schwartz distributions, an inversion formula for $T$ is derived. Convolutions and Fourier transforms of distributions in $(\{\bf D\}^\{\prime \}_Lp)$-spaces are used. It is shown that the equilibrium distribution with respect to the Riesz kernel of order $\alpha $, $0&lt; \alpha &lt; m$, of a compact subset $E$ of $\{\bf R\}^m$ has the following property: its restriction to the interior of $E$ is an absolutely continuous measure with analytic density which is expressed by an explicit formula.},
author = {Dunkels, Andrejs},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {197-205},
publisher = {Association des Annales de l'Institut Fourier},
title = {An inversion formula and a note on the Riesz kernel},
url = {http://eudml.org/doc/74299},
volume = {26},
year = {1976},
}

TY - JOUR
AU - Dunkels, Andrejs
TI - An inversion formula and a note on the Riesz kernel
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 4
SP - 197
EP - 205
AB - For potentials $U^T_K=K*T$, where $K$ and $T$ are certain Schwartz distributions, an inversion formula for $T$ is derived. Convolutions and Fourier transforms of distributions in $({\bf D}^{\prime }_Lp)$-spaces are used. It is shown that the equilibrium distribution with respect to the Riesz kernel of order $\alpha $, $0&lt; \alpha &lt; m$, of a compact subset $E$ of ${\bf R}^m$ has the following property: its restriction to the interior of $E$ is an absolutely continuous measure with analytic density which is expressed by an explicit formula.
LA - eng
UR - http://eudml.org/doc/74299
ER -

References

top
  1. [1] L. CARLESON, Selected Problems on Exceptional Sets, van Nostrand, Princeton, 1967. Zbl0189.10903MR37 #1576
  2. [2] J. DENY, Les potentiels d'énergie finie, Acta Math., 82 (1950), 107-183. Zbl0034.36201MR12,98e
  3. [3] J. DENY, Sur la définition de l'énergie en théorie du potentiel, Ann. Inst. Fourier, Grenoble, 2 (1950), 83-99. Zbl0042.33602MR13,459d
  4. [4] A. DUNKELS, On a property of the equilibrium distribution for the Riesz and Bessel kernels, Technical Report N° 7, Dept. of Mathematics, University of Umea, Sweden, 1972. Zbl0331.31006
  5. [5] N. DU PLESSIS, An Introduction to Potential Theory, Oliver and Boyd, Edinburgh, 1970. Zbl0208.13604MR55 #8382
  6. [6] O. FROSTMAN, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Comm. Sém. Math. Lund, 3 (1935), 1-118. Zbl0013.06302JFM61.1262.02
  7. [7] M. RIESZ, Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged, 9 (1938), 1-42. Zbl0018.40704JFM64.0476.03
  8. [8] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966. 
  9. [9] H. WALLIN, Regularity properties of the equilibrium distribution, Ann. Inst. Fourier, Grenoble, 15 (1965), 71-90. Zbl0184.13901MR34 #4531
  10. [10] H. WALLIN, Existence and properties of Riesz potentials satisfying Lipschitz conditions, Math. Scand., 19 (1966), 151-160. Zbl0145.37101MR35 #6856

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.