An inversion formula and a note on the Riesz kernel
Annales de l'institut Fourier (1976)
- Volume: 26, Issue: 4, page 197-205
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDunkels, Andrejs. "An inversion formula and a note on the Riesz kernel." Annales de l'institut Fourier 26.4 (1976): 197-205. <http://eudml.org/doc/74299>.
@article{Dunkels1976,
abstract = {For potentials $U^T_K=K*T$, where $K$ and $T$ are certain Schwartz distributions, an inversion formula for $T$ is derived. Convolutions and Fourier transforms of distributions in $(\{\bf D\}^\{\prime \}_Lp)$-spaces are used. It is shown that the equilibrium distribution with respect to the Riesz kernel of order $\alpha $, $0< \alpha < m$, of a compact subset $E$ of $\{\bf R\}^m$ has the following property: its restriction to the interior of $E$ is an absolutely continuous measure with analytic density which is expressed by an explicit formula.},
author = {Dunkels, Andrejs},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {197-205},
publisher = {Association des Annales de l'Institut Fourier},
title = {An inversion formula and a note on the Riesz kernel},
url = {http://eudml.org/doc/74299},
volume = {26},
year = {1976},
}
TY - JOUR
AU - Dunkels, Andrejs
TI - An inversion formula and a note on the Riesz kernel
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 4
SP - 197
EP - 205
AB - For potentials $U^T_K=K*T$, where $K$ and $T$ are certain Schwartz distributions, an inversion formula for $T$ is derived. Convolutions and Fourier transforms of distributions in $({\bf D}^{\prime }_Lp)$-spaces are used. It is shown that the equilibrium distribution with respect to the Riesz kernel of order $\alpha $, $0< \alpha < m$, of a compact subset $E$ of ${\bf R}^m$ has the following property: its restriction to the interior of $E$ is an absolutely continuous measure with analytic density which is expressed by an explicit formula.
LA - eng
UR - http://eudml.org/doc/74299
ER -
References
top- [1] L. CARLESON, Selected Problems on Exceptional Sets, van Nostrand, Princeton, 1967. Zbl0189.10903MR37 #1576
- [2] J. DENY, Les potentiels d'énergie finie, Acta Math., 82 (1950), 107-183. Zbl0034.36201MR12,98e
- [3] J. DENY, Sur la définition de l'énergie en théorie du potentiel, Ann. Inst. Fourier, Grenoble, 2 (1950), 83-99. Zbl0042.33602MR13,459d
- [4] A. DUNKELS, On a property of the equilibrium distribution for the Riesz and Bessel kernels, Technical Report N° 7, Dept. of Mathematics, University of Umea, Sweden, 1972. Zbl0331.31006
- [5] N. DU PLESSIS, An Introduction to Potential Theory, Oliver and Boyd, Edinburgh, 1970. Zbl0208.13604MR55 #8382
- [6] O. FROSTMAN, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Comm. Sém. Math. Lund, 3 (1935), 1-118. Zbl0013.06302JFM61.1262.02
- [7] M. RIESZ, Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged, 9 (1938), 1-42. Zbl0018.40704JFM64.0476.03
- [8] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966.
- [9] H. WALLIN, Regularity properties of the equilibrium distribution, Ann. Inst. Fourier, Grenoble, 15 (1965), 71-90. Zbl0184.13901MR34 #4531
- [10] H. WALLIN, Existence and properties of Riesz potentials satisfying Lipschitz conditions, Math. Scand., 19 (1966), 151-160. Zbl0145.37101MR35 #6856
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.